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QOutline

© The Inverse Galois Problem, G-covers and Hurwitz schemes
@ Rings of components of Hurwitz schemes and their geometry

© Fields of definition of components of Hurwitz schemes
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Part 1:
The Inverse Galois Problem, G-covers and Hurwitz schemes
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The Inverse Galois Problem

Question (Inverse Galois Problem (IGP))

G a finite group. Is there a Galois extension K | Q whose Galois group is isomorphic to G?
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The Inverse Galois Problem

Question (Inverse Galois Problem (IGP))

G a finite group. Is there a Galois extension K | Q whose Galois group is isomorphic to G?

Shafarevich ’'58 : yes if G is solvable.
General case: wide open.

Béranger Seguin Geometric methods for inverse Galois theory 72 7 D EEIC 5



The Inverse Galois Problem

Question (Inverse Galois Problem (IGP))

G a finite group. Is there a Galois extension K | Q whose Galois group is isomorphic to G?

Shafarevich ’'58 : yes if G is solvable.
General case: wide open.

Remark (Van der Waerden conjecture, proposed proof by Barghava '21)

Among the (2H + 1)" unitary polynomials of degree n whose coefficients are in {—H, ..., H},
only O(H"=1) have a Galois group not isomorphic to &,,.

We are looking for a needle in a haystack!
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The Inverse Galois Problem

Question (Inverse Galois Problem (IGP))

G a finite group. Is there a Galois extension K | Q whose Galois group is isomorphic to G?

Shafarevich ’'58 : yes if G is solvable.
General case: wide open.

Remark (Van der Waerden conjecture, proposed proof by Barghava '21)

Among the (2H + 1)" unitary polynomials of degree n whose coefficients are in {—H, ..., H},
only O(H"=1) have a Galois group not isomorphic to &,,.

We are looking for a needle in a haystack!
The Malle conjecture: a stronger conjecture which predicts the exact distribution of field
extensions.
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The Regular Inverse Galois Problem

G finite group.

Question (Regular Inverse Galois Problem (RIGP) for G)

Is there a regular Galois extension F | Q(t) of Galois group G?

"Regular” means FNQ = Q
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The Regular Inverse Galois Problem

G finite group.

Question (Regular Inverse Galois Problem (RIGP) for G)
Is there a regular Galois extension F | Q(t) of Galois group G?

"Regular” means FNQ = Q
Why bother?

e RIGP = IGP.
Follows from Hilbert’s Irreducibility Theorem ~- Basis of modern Inverse Galois Theory.
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The Regular Inverse Galois Problem

G finite group.

Question (Regular Inverse Galois Problem (RIGP) for G)
Is there a regular Galois extension F | Q(t) of Galois group G?

"Regular’ means FNQ =Q
Why bother?

o RIGP = IGP.
Follows from Hilbert’s Irreducibility Theorem ~- Basis of modern Inverse Galois Theory.

@ Extensions of function fields have a geometric meaning:

regular Galois extension of Q(t)| _ [connected G-cover
of Galois group G o defined over Q. |~

What are these objects?
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G-covers

Conf,: configuration space for n (distinct, unordered) points in P*(C).

Definition

A G-cover branched at t € Conf, is an unramified cover p of P1(C) \ ¢, equipped with a
morphism a : G — Aut(p) which induces a free transitive action on every fiber.
A marked G-cover also comes with a marked point above a basepoint ty € P1(C) \ t.

Another perspective: a dominant finite morphism from a smooth curve Y onto PL, étale
outside t + an action of G, free/transitive on every unramified fiber.
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G-covers

Conf,: configuration space for n (distinct, unordered) points in P*(C).

Definition

A G-cover branched at t € Conf, is an unramified cover p of P1(C) \ ¢, equipped with a
morphism a : G — Aut(p) which induces a free transitive action on every fiber.
A marked G-cover also comes with a marked point above a basepoint ty € P1(C) \ t.

Another perspective: a dominant finite morphism from a smooth curve Y onto PL, étale
outside t + an action of G, free/transitive on every unramified fiber.
If the curve Y is irreducible, its function field is a Galois extension of C(t) of group G:

. Galois extensions
{Irreducible G-covers} ~ { }

F | C(t) of group G
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Fields of definition

@ A G-cover Y is defined over Q if there is a G-cover Y/ — P(l@ such that the following
diagram is cartesian:

Y —— Y

| |

1 1

i.e. the cover can be defined by polynomial equations with rational coefficients.
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Fields of definition

@ A G-cover Y is defined over Q if there is a G-cover Y/ — P(l@ such that the following
diagram is cartesian:

Y —— Y

| |

1 1

i.e. the cover can be defined by polynomial equations with rational coefficients.

e Main takeaway: G-covers defined over Q (with Y’ irreducible) correspond to regular
Galois extensions of Q(t) of group G.
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Fields of definition

@ A G-cover Y is defined over Q if there is a G-cover Y/ — }P’(l@ such that the following
diagram is cartesian:

Y —— Y

| |

1 1

i.e. the cover can be defined by polynomial equations with rational coefficients.

e Main takeaway: G-covers defined over Q (with Y’ irreducible) correspond to regular
Galois extensions of Q(t) of group G.

Question (Geometrical reformulation of RIGP for G)

Is there a G-cover defined over Q7
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Hurwitz schemes

The Hurwitz moduli scheme Hur*(G, n) is a Q-scheme whose C-points are isomorphism
classes of marked G-covers with n branch points.
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Hurwitz schemes

The Hurwitz moduli scheme Hur*(G, n) is a Q-scheme whose C-points are isomorphism
classes of marked G-covers with n branch points.

@ The Hurwitz space is itself a cover of Conf,,
Hur*(G, n) given by the "branch points” map.

!

Conf,
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Hurwitz schemes

The Hurwitz moduli scheme Hur*(G, n) is a Q-scheme whose C-points are isomorphism
classes of marked G-covers with n branch points.

@ The Hurwitz space is itself a cover of Conf,,
Hur*(G, n) given by the "branch points” map.
l e Lifting a path in Conf,
Conf < unique deformation of a G-cover as the branch points move around
onf,
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Hurwitz schemes

The Hurwitz moduli scheme Hur*(G, n) is a Q-scheme whose C-points are isomorphism
classes of marked G-covers with n branch points.

@ The Hurwitz space is itself a cover of Conf,,
Hur*(G, n) given by the "branch points” map.
l o Lifting a path in Conf,
Conf,, < unique deformation of a G-cover as the branch points move around
e Thompson '84 : IGP for the Monster group (rigidity methods).

Later reinterpreted as the fact that there is an irreducible component X of
Hur(M, 3) such that X — Confs is an isomorphism.
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Hurwitz spaces and RIGP

Moduli space property: if S is a Q-scheme, then there is a (natural) bijection between:
e Morphisms S — Hur*(G, n)

o Marked G-covers Y P! x S
SpecQ
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Hurwitz spaces and RIGP

Moduli space property: if S is a Q-scheme, then there is a (natural) bijection between:
@ Morphisms S — Hur*(G, n)
o Marked G-covers Y = P! x S

SpecQ
Take S = SpecQ:

marked G-covers
{Q-points of Hur*(G, n)} ~ defined over Q
with n branch points

Remark: issues due to the fact that in general the Hurwitz moduli scheme Hur(G, n) for
non-marked G-covers is a coarse moduli space. When G is centerfree, it is a fine moduli space.
In this case its Q-points indeed correspond to non-marked covers defined over Q.
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Hurwitz spaces and RIGP

Moduli space property: if S is a Q-scheme, then there is a (natural) bijection between:
@ Morphisms S — Hur*(G, n)
o Marked G-covers Y = P! x S

SpecQ
Take S = SpecQ:
marked G-covers

{Q-points of Hur*(G, n)} ~ defined over Q
with n branch points

Remark: issues due to the fact that in general the Hurwitz moduli scheme Hur(G, n) for
non-marked G-covers is a coarse moduli space. When G is centerfree, it is a fine moduli space.
In this case its Q-points indeed correspond to non-marked covers defined over Q.

The regular inverse Galois problem for G becomes a problem of diophantine geometry:

Does the Hurwitz scheme Hur(G, n) have rational points, for some n € N7
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Use of geometrical methods

Ellenberg, Venkatesh, Westerland, Tran ’16-'17, their strategy:
@ Homological information about Hurwitz spaces (combinatorial methods)
@ ~» Count Fg-points using Grothendieck-Lefschetz methods (i.e. extensions of Fq(t))

@ ~» Progress on Malle's and Cohen-Lenstra’s conjectures over Fg(t).
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Use of geometrical methods

Ellenberg, Venkatesh, Westerland, Tran ’16-'17, their strategy:
@ Homological information about Hurwitz spaces (combinatorial methods)
@ ~» Count Fg-points using Grothendieck-Lefschetz methods (i.e. extensions of Fq(t))

@ ~» Progress on Malle's and Cohen-Lenstra’s conjectures over Fg(t).

Two reasons to study irreducible components of Hurwitz schemes:
@ Homology of Hurwitz spaces (including Hp) is central in the strategy above

@ A Q-point has to belong to a component defined over Q
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Part 2:
Rings of components of Hurwitz schemes and their geometry
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Gluing and patching

Gluing operation on marked G-covers:

G-cover G-cover G-cover
monodromy group H; | x | monodromy group H, | = | monodromy group (Hi, H>)
n branch points n’ branch points n+ n’ branch points

Glue two projective lines together
= get a single projective line with more branch points!
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Gluing and patching

Gluing operation on marked G-covers:

G-cover G-cover G-cover
monodromy group H; | x | monodromy group H, | = | monodromy group (Hi, H>)
n branch points n’ branch points n+ n’ branch points

The connected component of the glued cover only depends on the connected components:
~» multiply components of | | Hur*(G, n).
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Gluing and patching

Gluing operation on marked G-covers:

G-cover G-cover G-cover
monodromy group H; | x | monodromy group H, | = | monodromy group (Hi, H>)
n branch points n’ branch points n+ n’ branch points

The connected component of the glued cover only depends on the connected components:
~» multiply components of | | Hur*(G, n).

Remark: this is well defined for (components of) marked G-covers, but the interesting
arithmetic questions are for (components of) non-marked G-covers.
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Gluing and patching

Gluing operation on marked G-covers:

G-cover G-cover G-cover
monodromy group H; | x | monodromy group H, | = | monodromy group (Hi, H>)
n branch points n’ branch points n+ n’ branch points

The connected component of the glued cover only depends on the connected components:

~» multiply components of | | Hur*(G, n).

Remark: this is well defined for (components of) marked G-covers, but the interesting
arithmetic questions are for (components of) non-marked G-covers.

Patching theory (Harbater): A similar operation can be done with G-covers defined over K
when K is a complete valued field (C, K((t)), Qp, - ..).
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The ring of components

k a field of characteristic zero.

Definition (Ring of components)
The ring of components R(G) is the graded k-algebra €, Ho(Hur*(G, n), k) equipped with
the multiplication induced by gluing.
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The ring of components

k a field of characteristic zero.

Definition (Ring of components)
The ring of components R(G) is the graded k-algebra €, Ho(Hur*(G, n), k) equipped with
the multiplication induced by gluing.

Introduced by EVW in the case of components of covers of the affine line.
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The ring of components

k a field of characteristic zero.

Definition (Ring of components)

The ring of components R(G) is the graded k-algebra €, Ho(Hur*(G, n), k) equipped with
the multiplication induced by gluing.

Introduced by EVW in the case of components of covers of the affine line.
For PL:

Theorem (S. 22)
R(G) is a commutative graded k-algebra of finite type.

~> | can define the scheme Proj R(G) (variant of Spec for graded rings) and study it
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The splitting number

@ ¢ = conjugacy class of G;

e R(G,c) = ring of components of marked G-covers with monodromy elements € ¢
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The splitting number

@ ¢ = conjugacy class of G;
e R(G,c) = ring of components of marked G-covers with monodromy elements € ¢

o Splitting: if H C G, then ¢ N H may contain several classes. Let sy + 1 be their count:
c CG

/X

di d> ... ds, ds,+1 CH
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The splitting number

@ ¢ = conjugacy class of G;

e R(G,c) = ring of components of marked G-covers with monodromy elements € ¢

e Splitting: if H C G, then ¢ N H may contain several classes. Let sy + 1 be their count:
c CG

/X

di d> ... ds, ds,+1 CH

o EVW prove homological stability when sy = 0 ~» how does it generalize?
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Geometry of rings of components

Theorem (S.22)

The Krull dimension d of Proj R(G, c¢) equals maxycc sy, and the count of components with
n branch points grows like n9.

| have a more precise version, dealing with each subgroup H.
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Geometry of rings of components

Theorem (S.22)

The Krull dimension d of Proj R(G, c¢) equals maxycc sy, and the count of components with
n branch points grows like n9.

| have a more precise version, dealing with each subgroup H.
| also have an expression of the leading coefficient:

Theorem (S. 22)

The count of components with n branch points and monodromy group H has an average order
given by:

‘H2(H, cnN H)’ =
’Hab‘SH!

for an explicit quotient Hy(H, c N H) of the second group homology of H.
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Example: symmetric groups

G = G4 and c the conjugacy class of transpositions.

@ The ring of components admits the presentation:

R(&4,c) = k[(Xij)lgiqu]
| (XX = XieXje = XX )1<i<j<k<d

B
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Example: symmetric groups

G = G4 and c the conjugacy class of transpositions.

@ The ring of components admits the presentation:

R(&4,c) = k[(XU)lgiqu]
| (XX = XieXje = XX )1<i<j<k<d

@ Description of Proj R(&4, ¢)(k) as a subvariety of P 1)_1(k) of dimension |d/2] — 1:
o one vertex ea for each subset A C {1,...,d} of size > 2 ~ Gy
o the line (ea, eg) when A, B are disjoint ~ Gy x Gp
o the plane (ea, eg, ec) when A, B, C are disjoint ~ Gp x6p x6¢
e etc.
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Example of G;

{1.2}
{1,2,3} 1,3}

{2,3}

Figure: Proj R(&3, ¢)

dimension 0 ~ situation of EVW (homological stability)
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Example of G,

{1,2,3}  {1,2,4} {1,3,4} {2,3,4}

X X X X

(1.2.3.4) {3,4} {24} {23}

X

{I,2} {1,3} {1,4}

Figure: Proj R(S4,c)

dimension 1 ~~ no homological stability (linear growth)
(schematic drawing: the actual drawing is in 5D...)

HE )~
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Example of Gg4?

To observe dimension 2, the smallest example is d = 6. Problem: many irreducible
components to draw (77 vertices, 160 lines, 15 planes) en 14D.

| draw only the part of the Proj corresponding to subsets of {1,2,3,4,5,6} of size 2, i.e. the
15 planes, represented as triangles:

Béranger Seguin

Geometric methods for inverse Galois theory 7711 7 DI [HREIC 3517 2 2% fu] =1 /57



Part 3:
Fields of definition of components of Hurwitz schemes
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Fields of definition and products

How does the product of components behave with the fields of definition?
(field of definition = of the underlying component of non-marked covers)
If x,y are components defined over Q, is xy also defined over Q7
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Fields of definition and products

How does the product of components behave with the fields of definition?
(field of definition = of the underlying component of non-marked covers)
If x,y are components defined over Q, is xy also defined over Q7
Probably not true in general. A partial answer:

Theorem (Cau 12)

If x,y are components defined over Q,

{ngg’ ‘ g,8 € G} is stable under the action of Gal (Q | Q).

If this set is a singleton = xy is defined over Q.
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A well-behaved situation

Theorem (S. 23)

If x,y are components defined over Q, denote their respective monodromy groups by Hy, H>.
If HyHy = (Hi, Hy) then for all o € Gal(Q | Q):

o.(xy) = (6.x)(0.y).

[
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A well-behaved situation

Theorem (S. 23)

If x,y are components defined over Q, denote their respective monodromy groups by Hy, H>.
If HiHy = (Hy, Ha) then for all o € Gal(Q | Q):

o.(xy) = (6.x)(0.y).

If x,y are components defined over Q and their monodromy groups Hi, H» satisfy HiH> = G,
then xy is defined over Q.
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A well-behaved situation

Theorem (S. 23)

If x,y are components defined over Q, denote their respective monodromy groups by Hy, H>.
If HiHy = (Hy, Ha) then for all o € Gal(Q | Q):

o.(xy) = (6.x)(0.y). )
If x,y are components defined over Q and their monodromy groups Hi, H» satisfy HiH> = G,
then xy is defined over Q.

If x is a component defined over Q and n > 1, then x" is defined over Q.
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Lifting invariant methods

The lifting invariant is an invariant (introduced by EVW) with values in a group.
It can be used to study fields of definition. An example:

Theorem (S. 23)

For a constant M depending only on the group G, if x,y are components defined over QQ and
xy has G as its monodromy group, then (xy)M is defined over Q.

Béranger Seguin
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Lifting invariant methods

The lifting invariant is an invariant (introduced by EVW) with values in a group.
It can be used to study fields of definition. An example:

Theorem (S. 23)

For a constant M depending only on the group G, if x,y are components defined over QQ and
xy has G as its monodromy group, then (xy)M is defined over Q.

Ingredients for the proof:
o The lifting invariant of x7y" is equal to that of xy (not true for covers of All)

o If every conjugacy class of G is the conjugacy class of either 0 or > M local monodromy
elements, then the component is entirely determined by its lifting invariant (generalization
of the Conway-Parker theorem)

@ This implies x7y?" = xy. Conclude by Cau’s theorem.
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Patching methods

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x,y are components defined over Q, there are v, € G such that x"y" is defined over Q.
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Patching methods

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x,y are components defined over Q, there are v, € G such that x"y" is defined over Q.

Sketch of proof.

@ Using Hilbert's irreducibility theorem, construct an infinite sequence of fields Ki, K3, ..
linearly disjoint over Q, such that there are covers f, € x, g, € y defined over K.
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Patching methods

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x,y are components defined over Q, there are v, € G such that x"y" is defined over Q.

Sketch of proof.
@ Using Hilbert's irreducibility theorem, construct an infinite sequence of fields Ki, K3, ..
linearly disjoint over Q, such that there are covers f, € x, g, € y defined over K.
@ See f,, g, as covers defined over the complete field K,((t)) and glue them together into a
cover h, defined over K,((t)), which is "in" the component x"y7 for some ,,~, € G.
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Patching methods

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x,y are components defined over Q, there are v, € G such that x"y" is defined over Q.

Sketch of proof.
@ Using Hilbert's irreducibility theorem, construct an infinite sequence of fields Ki, Ko, . . .,
linearly disjoint over Q, such that there are covers f, € x, g, € y defined over K.
@ See f,, g, as covers defined over the complete field K,((t)) and glue them together into a
cover h, defined over K,((t)), which is "in" the component x"y7 for some ,,~, € G.
@ Since there are finitely many components of the form x7y?’, at least two of the covers
hp, hy belong to the same component x7y7 .
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Patching methods

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x,y are components defined over Q, there are v, € G such that x"y" is defined over Q.

Sketch of proof.

@ Using Hilbert's irreducibility theorem, construct an infinite sequence of fields Ki, Ko, . . .,
linearly disjoint over Q, such that there are covers f, € x, g, € y defined over K.

@ See f,, g, as covers defined over the complete field K,((t)) and glue them together into a
cover h, defined over K,((t)), which is "in" the component x"y7 for some ,,~, € G.

@ Since there are finitely many components of the form x7y?’, at least two of the covers
hp, hy belong to the same component x7y7 .

o The field of definition of x7y"" is included in:

QN Ka((1)) N Ky ((t)) = Q.
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Publications

My preprint: " The Geometry of Rings of Components of Hurwitz Spaces”. arXiv:2210.12793
Forthcoming: "Fields of Definition of Components of Hurwitz Spaces”.
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