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Context: Counting problems

We count certain algebraic/arithmetic objects x according to an
invariant invariant(x) ∈ N:

|{x | invariant(x) ≤ X}| ∼
X→∞

???

Examples:
▶ field extensions (e.g., by discriminant)
▶ representations of arithmetic groups (by degree)

A general method: study the Dirichlet series

f (s) :=
∑

x
invariant(x)−s .
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Tauberian theorems
Asymptotics of N(X ) := |{x | invariant(x) ≤ X}|
↔ Rightmost pole of f (s) = ∑

invariant(x)−s .

Re(s)

Im(s)

0

Pole at s = a
of order bNon

-co
nv

erg
ing

⇒ N(X ) ∼ CX a(log X )b−1

for some C > 0 (≈ residue)
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Local–global principles

Assume that we are counting objects over a number field K .
The field K has “places”, i.e., completions. Example over Q:

Places Archimedean Primes (non-Archimedean)
∞ 2 3 5 7 11 . . .

Completions R Q2 Q3 Q5 Q7 Q11 . . .

Counting is easier over completions as we have analytic tools
(Intermediate value theorem over R, Hensel’s lemma over Qp)
A “global” object (over K ) ; “local” objects (over completions).
Sometimes, this works backwards (local–global principle).
In this case, f (s) factors as a combinatorial Euler product:

f (s) =
∏

p place of K
fp(s).

where fp counts local objects. We can then study the poles by
comparison with classical Euler products, e.g., L-functions.
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An example:
Count extensions of non-commutative fields/simple algebras.
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Counting non-commutative extensions

We focus on finite-dimensional simple Q-algebras.

▶ There is a non-commutative version of Galois theory!
▶ There is a well-defined notion of discriminant!
▶ Made accessible by class field theory:

Central simple algebras (=CSAs) over number fields are
well-understood and satisfy a local–global principle.
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A toy example (1/2)

Let’s count quaternion algebras over Q! (CSAs of dim. 4)

Hasse invariant ⇒ exactly one nontrivial quaternion algebra over
each completion (over R: Hamilton quaternions R[i , j , k]).
Local–global principle for CSAs ⇒ choosing a quaternion algebra
over Q amounts to choosing a finite set S of places at which the
local algebra is nontrivial. Small obstruction: |S| must be even.

⇒ We can ignore both the place at ∞ and the parity condition.
Just choose a finite set S ′ of primes p. Discriminant = ∏

p∈S′ p2.
⇒ A quaternion algebra over Q is uniquely determined by its
discriminant, which is the square of a squarefree integer.
(i.e., there are as many quaternion algebras over Q with
discriminant ≤ X as there are squarefree integers ≤

√
X )
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A toy example (2/2)
A quaternion algebra over Q is uniquely determined by its
discriminant, which is the square of a squarefree integer.
The corresponding Dirichlet series is

f (s) :=
∑

n squarefree
n−2s =

∏
p prime

(1+p−2s) =
∏

p prime

1 − p−4s

1 − p−2s = ζ(2s)
ζ(4s)

ζ(s): non-vanishing for ℜ(s) ≥ 2, simple pole at s = 1 of residue 1
⇒ f has its rightmost pole at s = 1

2 , of order 1 and residue

1
ζ(2) = 6

π2 .

So the number of quaternion algebras with discriminant ≤ X is

∼ 6
π2 X 1/2
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More general extensions (1/2)

K a simple Q-algebra, Z ⊆ Z (K ), n ≥ 2.
We count extensions L|K of degree n with center Z .

⇔ Describe poles (location, order) of Dirichlet series

f (s) :=
∑

ext. L|K as above
||Disc(L)||−s

Local–global principle for CSAs ⇒ f (almost) factors:

f (s) =
∏

p prime of Z
fp(s).

L

K

Z (K )

Z

n

Comparing this Euler product with a zeta function, we prove our
main theorem...
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More general extensions (2/2)

K a simple Q-algebra, Z ⊆ Z (K ), n ≥ 2.

Theorem (Gundlach–S. ’24)
For explicit a, b ∈ Q>0, C ∈ R≥0, the number
of extensions L|K with Z (L) = Z, [L : K ] = n,
and ||Disc(L)|| ≤ X is ∼

X→∞
CX a(log X )b−1.

Assume Z (K )|Z is Galois of group G .
Let M :=

√
n[K : Z ], j :=

√
n

[Z(K):Z ] .
(They have to be integers for L to exist.)
u := smallest prime divisor of j · |G |.
β := proportion of g ∈ G with u | j · ord(g)

a = M2
(

1 − 1
u

)
b = (u − 1)β.

The expression for C is more complicated.

L

K

Z (K )

Z

n
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Other work within
Project A4

Combinatorial Euler products are also used to count:
▶ representations of arithmetic and profinite groups

(Blomer, Voll)
▶ average kernel sizes of module representations over finite

Artinian rings (Rossmann, Voll)
▶ wildly ramified extensions of function fields in

characteristic p (Gundlach, Potthast, S.)
Come check our poster!
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