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Context: Counting problems . §§§

We count certain algebraic/arithmetic objects x according to an
invariant invariant(x) € N:

[{x | invariant(x) < X}| ~ 7?77
X—00
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Context: Counting problems . 5'@5

We count certain algebraic/arithmetic objects x according to an
invariant invariant(x) € N:

[{x | invariant(x) < X}| ~ 7?77
X—00

Examples:

» field extensions (e.g., by discriminant)

» representations of arithmetic groups (by degree)
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Context: Counting problems ' 5'}35

We count certain algebraic/arithmetic objects x according to an
invariant invariant(x) € N:

[{x | invariant(x) < X}| ~ 7?77
X—00

Examples:
» field extensions (e.g., by discriminant)

» representations of arithmetic groups (by degree)

A general method: study the Dirichlet series

f(s):= Z invariant(x)~°.
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Tauberian theorems . §§§

Asymptotics of N(X) := |{x | invariant(x) < X}|
<> Rightmost pole of f(s) = " invariant(x) .

Im(s)
& !
<§’(\4 :
eoo 1Pole at s = a
, of order b
0

: Re(s)



Tauberian theorems . §§§

Asymptotics of N(X) := |{x | invariant(x) < X}|
<> Rightmost pole of f(s) = " invariant(x) .

Im(s)
& !
<§§\4 :
eoo 1Pole at s = a
, of order b
0

= N(X) ~ CX?(log X)b~1
for some C > 0 (= residue)

: Re(s)

Project A4 — Combinatorial Euler products - Béranger Seguin



Local—global principles . ggg

Assume that we are counting objects over a number field K.
The field K has “places”, i.e., completions. Example over Q:

Places Archimedean Primes (non-Archimedean)
o0 2 3 5 7 11
Completions R Q| Q3 | Qs | Q7 | Qu
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Local—global principles . ggg

Assume that we are counting objects over a number field K.
The field K has “places”, i.e., completions. Example over Q:

Places Archimedean Primes (non-Archimedean)
o0 2 3 5 7 11
Completions R Q| Q3 | Qs | Q7 | Qu

Counting is easier over completions as we have analytic tools
(Intermediate value theorem over R, Hensel's lemma over Q)
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Local—global principles . ggg

Assume that we are counting objects over a number field K.
The field K has “places”, i.e., completions. Example over Q:

Places Archimedean Primes (non-Archimedean)
o0 2 3 5 7 11
Completions R Q| Q3 | Qs | Q7 | Qu

Counting is easier over completions as we have analytic tools
(Intermediate value theorem over R, Hensel's lemma over Q)

A “global” object (over K) ~ “local” objects (over completions).
Sometimes, this works backwards (local-global principle).
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Local—global principles . QES

Assume that we are counting objects over a number field K.
The field K has “places”, i.e., completions. Example over Q:

Places Archimedean Primes (non-Archimedean)
o0 2 3 5 7 11
Completions R Q| Q3 | Qs | Q7 | Qu

Counting is easier over completions as we have analytic tools
(Intermediate value theorem over R, Hensel's lemma over Q)

A “global” object (over K) ~ “local” objects (over completions).
Sometimes, this works backwards (local-global principle).
In this case, f(s) factors as a combinatorial Euler product:

fls)= I 1%

p place of K

where f, counts local objects. We can then study the poles by "
comparison with classical Euler products, e.g., L-functions.
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An example:

Count extensions of non-commutative fields/simple algebras.
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Counting non-commutative extensions ) §§§

We focus on finite-dimensional simple Q-algebras.
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Counting non-commutative extensions ) §§§

We focus on finite-dimensional simple Q-algebras.

» There is a non-commutative version of Galois theory!
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Counting non-commutative extensions ) §'§§

We focus on finite-dimensional simple Q-algebras.
» There is a non-commutative version of Galois theory!

» There is a well-defined notion of discriminant!
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Counting non-commutative extensions ) 5'}35

We focus on finite-dimensional simple Q-algebras.
» There is a non-commutative version of Galois theory!
» There is a well-defined notion of discriminant!

» Made accessible by class field theory:
Central simple algebras (=CSAs) over number fields are
well-understood and satisfy a local-global principle.
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A toy example (1/2) L) 18R

Let's count quaternion algebras over Q! (CSAs of dim. 4)
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A toy example (1/2) L) 18R

Let's count quaternion algebras over Q! (CSAs of dim. 4)

Hasse invariant = exactly one nontrivial quaternion algebra over
each completion (over R: Hamilton quaternions R[/, j, k]).

Project A4 — Combinatorial Euler products - Béranger Seguin



A toy example (1/2) L) 18R

Let's count quaternion algebras over Q! (CSAs of dim. 4)

Hasse invariant = exactly one nontrivial quaternion algebra over
each completion (over R: Hamilton quaternions R[/, j, k]).

Local—global principle for CSAs = choosing a quaternion algebra
over Q amounts to choosing a finite set S of places at which the
local algebra is nontrivial. Small obstruction: |S| must be even.
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A toy example (1/2)

Let's count quaternion algebras over Q! (CSAs of dim. 4)

1 TRR
358

Hasse invariant = exactly one nontrivial quaternion algebra over
each completion (over R: Hamilton quaternions R[/, j, k]).

Local—global principle for CSAs = choosing a quaternion algebra
over Q amounts to choosing a finite set S of places at which the
local algebra is nontrivial. Small obstruction: |S| must be even.

Places Archimedean | Primes (non-Archimedean)
o0 2135|7111
Example 1 X X
Example 2 X X X | X

| had a third example, but...
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A toy example (1/2)

Let's count quaternion algebras over Q! (CSAs of dim. 4)
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Hasse invariant = exactly one nontrivial quaternion algebra over
each completion (over R: Hamilton quaternions R[/, j, k]).

Local—global principle for CSAs = choosing a quaternion algebra
over Q amounts to choosing a finite set S of places at which the
local algebra is nontrivial. Small obstruction: |S| must be even.

Places

Archimedean

Primes (non-Archimedean)

213|565 |7 |11

Example 3

xXo

X X X

Unfortunately, the elephants are passing by and hiding a cell...
Can you see behind the elephants?
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A toy example (1/2) © 55
Let's count quaternion algebras over Q! (CSAs of dim. 4)

Hasse invariant = exactly one nontrivial quaternion algebra over
each completion (over R: Hamilton quaternions R[/, j, k]).

Local—global principle for CSAs = choosing a quaternion algebra
over Q amounts to choosing a finite set S of places at which the
local algebra is nontrivial. Small obstruction: |S| must be even.

Places Archimedean | Primes (non-Archimedean)
00 2113|5711
Example 3 X X X X
Well done!

= We can ignore both the place at co and the parity condition.
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A toy example (1/2) L) 18R

Let's count quaternion algebras over Q! (CSAs of dim. 4)

Hasse invariant = exactly one nontrivial quaternion algebra over
each completion (over R: Hamilton quaternions R[/, j, k]).

Local—global principle for CSAs = choosing a quaternion algebra
over Q amounts to choosing a finite set S of places at which the
local algebra is nontrivial. Small obstruction: |S| must be even.

= We can ignore both the place at co and the parity condition.
Just choose a finite set S’ of primes p. Discriminant = [pes p>.
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A toy example (1/2) L) 18R

Let's count quaternion algebras over Q! (CSAs of dim. 4)

Hasse invariant = exactly one nontrivial quaternion algebra over
each completion (over R: Hamilton quaternions R[/, j, k]).

Local—global principle for CSAs = choosing a quaternion algebra
over Q amounts to choosing a finite set S of places at which the
local algebra is nontrivial. Small obstruction: |S| must be even.

= We can ignore both the place at co and the parity condition.
Just choose a finite set S’ of primes p. Discriminant = [pes p>.
=- A quaternion algebra over Q is uniquely determined by its
discriminant, which is the square of a squarefree integer.

(i.e., there are as many quaternion algebras over Q with
discriminant < X as there are squarefree integers < v/ X) ‘
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A toy example (2/2) w R

A quaternion algebra over QQ is uniquely determined by its
discriminant, which is the square of a squarefree integer.
The corresponding Dirichlet series is

N

n squarefree p prime p prime
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A toy example (2/2) © 55

A quaternion algebra over QQ is uniquely determined by its
discriminant, which is the square of a squarefree integer.
The corresponding Dirichlet series is

flo):= > no=I] @)= ]I 1[)_2::21213

n squarefree p prime p prime

¢(s): non-vanishing for $(s) > 2, simple pole at s = 1 of residue 1
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A toy example (2/2) © 55

A quaternion algebra over QQ is uniquely determined by its
discriminant, which is the square of a squarefree integer.
The corresponding Dirichlet series is

flo):= > no=I] @)= ]I 1[)_2::21213

n squarefree p prime p prime

¢(s): non-vanishing for $(s) > 2, simple pole at s = 1 of residue 1
= f has its rightmost pole at s = % of order 1 and residue

1

2 =
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A toy example (2/2) L) 18R

A quaternion algebra over QQ is uniquely determined by its
discriminant, which is the square of a squarefree integer.
The corresponding Dirichlet series is

flo):= > no=I] @)= ]I 1p_2::g83

n squarefree p prime p prime

¢(s): non-vanishing for R(s) > 2, simple pole at s = 1 of residue 1
= f has its rightmost pole at s = % of order 1 and residue

1 6

@ =

So the number of quaternion algebras with discriminant < X is

N%X1/2 "
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More general extensions (1/2) 358
K a simple Q-algebra, Z C Z(K), n > 2. L
We count extensions L|K of degree n with center Z. I
e
Z(K)
Z
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More general extensions (1/2)

K a simple Q-algebra, Z C Z(K), n > 2.
We count extensions L|K of degree n with center Z.
< Describe poles (location, order) of Dirichlet series

f(s):= Z |Disc(L)|~°

ext. L|K as above
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More general extensions (1/2) 358

K a simple Q-algebra, Z C Z(K), n > 2. L

We count extensions L|K of degree n with center Z. on

< Describe poles (location, order) of Dirichlet series K
f(s):== > |Disc(L)]° ‘

ext. L|K as above

Local—global principle for CSAs = f (almost) factors: /

fis)="JI f(s) 4

p prime of Z
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More general extensions (1/2) . EES

K a simple Q-algebra, Z C Z(K), n > 2. L
We count extensions L|K of degree n with center Z. n
< Describe poles (location, order) of Dirichlet series

f(s) := 3 |Disc(L)]~* ‘

ext. L|K as above

Local—global principle for CSAs = f (almost) factors: /
fls)="II (). z

p prime of Z

Comparing this Euler product with a zeta function, we prove our
main theorem...

Project A4 — Combinatorial Euler products - Béranger Seguin



More general extensions (2/2) . ggg

K a simple Q-algebra, Z C Z(K), n > 2.
Theorem (Gundlach-S. '24)

For explicit a,b € Qso, C € R>q, the number

of extensions L|K with Z(L) = Z, [L: K] = n, L

and |Disc(L)| < X /'sXN CX?(log X)b~1. R
—00
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More general extensions (2/2) . EES

K a simple Q-algebra, Z C Z(K), n > 2.
Theorem (Gundlach-S. '24)

For explicit a,b € Qso, C € R>q, the number

of extensions L|K with Z(L) = Z, [L: K] = n, L

and |Disc(L)| < X /'sXN CX?(log X)b~1. R
—00

Assume Z(K)|Z is Galois of group G. K
Let M := /n[K : Z], j := ,/m.

(They have to be integers for L to exist.)

u := smallest prime divisor of j - |G]|.

B := proportion of g € G with u|j - ord(g)

u

a:I\/l2<11) b= (u—1)8.

The expression for C is more complicated.
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Other work within
Project A4

» representations of arithmetic and profinite groups
(Blomer, Voll)

» average kernel sizes of module representations over finite
Artinian rings (Rossmann, Voll)

» wildly ramified extensions of function fields in
characteristic p (Gundlach, Potthast, S.)

Come check our poster!
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