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Abstract. We answer various questions concerning the distribution of extensions of a given central
simple algebra K over a number field. Specifically, we give asymptotics for the count of inner
Galois extensions L/K of fixed degree and center with bounded discriminant. We also relate the
distribution of outer extensions of K to the distribution of field extensions of its center Z(K). This
paper generalizes the study of asymptotics of field extensions to the noncommutative case in an
analogous manner to the program initiated by Deschamps and Legrand to extend inverse Galois
theory to division algebras.
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1. Introduction

1.1. Context

The study of statistics of field extensions turns inverse Galois theory into a quantitative problem,
replacing the question of the existence of extensions with a given Galois group by the question of their
asymptotic distribution. The main conjecture in this area was introduced by Malle in [Mal02, Mal04]
as a proposed generalization of results of Mäki and Wright for abelian extensions of number fields
[Mäk85, Wri89]. This conjecture has received a lot of attention and has been studied using various
methods: for some recent articles, see for example [Wan21, Klü22, ETW23, ESZB23, KP23, Mot23].
Another active area concerns the distribution of extensions of fixed degree without specifying a Galois
group, see [Coh54, DH71, Bha05, Bha10] for small degrees and [Sch95, EV06, Cou20, BSW22, LT22]
for all degrees.

Noncommutative Galois theory was developed in [Jac40, Jac47, Car47]. We will define the notions
we need, but readers wanting to learn more may refer to [Coh95, Jac56] or to the introductory
sections of [Des18, Des23]. In [DL20], a program was initiated1 to extend inverse Galois theory to
division rings. Since then, this question has been vastly explored, and fundamental results were
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1One may argue that first steps towards this program were taken by research concerning admissible groups, cf. for

example [Sch68, HHK11].
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obtained in the articles [ALP20, Beh21, Des21, BDL22, Leg22a, Leg22b, Leg24]. This article aims,
in a similar manner, to study the quantitative aspects of extensions of noncommutative algebras.

1.2. Focus of this work

Our objects of study are (finite-dimensional) simple Q-algebras. If K is such an algebra, its cen-
ter Z(K) is a number field.

Definition 1.1. An extension of a simple Q-algebra K is a simple Q-algebra L equipped with an
injective Q-algebra homomorphism K ↪→ L. We usually think of K as a subalgebra of L via this
embedding. An isomorphism between extensions L1 and L2 of K with embeddings e1 : K ↪→ L1 and
e2 : K ↪→ L2 is a Q-algebra isomorphism i : L1

∼→ L2 such that e2 = i ◦ e1.

Let L/K be an extension of simple Q-algebras. We denote by Aut(L/K) the automorphism
group of L/K, i.e., the set of Q-algebra automorphisms of L which act trivially on K. The degree is
defined as [L : K] := dimQ(L)

dimQ(K) . If K is a division algebra, the degree agrees with the dimension of L
both as a left K-vector space and as a right K-vector space. In Subsection 1.4, we define a quantity
d(L/K) ∈ Q>0, which we treat as “(the absolute value of) the norm of the relative discriminant
of L/K”. One may then ask the following question:

Question 1.2. Let K be a simple Q-algebra and n ≥ 2. How many isomorphism classes of exten-
sions L/K of degree n are there which satisfy the bound d(L/K) ≤ X, asymptotically as X → +∞?

Question 1.2 is very general. For instance, the extensions Question 1.2 aims to count include
field extensions of number fields, which are notoriously hard to parametrize. Instead of studying
this general problem, we address two more specific questions, focusing only on certain types of
extensions. More precisely, we study the asymptotics of “inner Galois extensions” and of “outer
extensions”, defined below. The former question turns out to admit a complete answer which we give
in Theorem 2.16, whereas the latter reduces to well-studied questions concerning the distribution
of commutative field extensions, as we explain in Section 3. These two types of extensions are
representative of all extensions of K, as by Theorem 4.2 every extension L/K of simple algebras
splits “naturally” into a tower L/L′/K where L/L′ is inner Galois and L′/K is outer. (Here, L′

is the double-centralizer of K in L.) This fact could be used to address more general variants of
Question 1.2, as we briefly discuss in Section 4.

Throughout the article, we make a special effort to include simple algebras which are not division
algebras in all discussions, but we also systematically prove the corresponding statements focusing
exclusively on division algebras.

1.2.1. Inner Galois extensions. In Section 2, we restrict our attention to inner Galois extensions
of a simple Q-algebra K, where an extension L/K is:

• inner if all of its automorphisms are inner, i.e., given by conjugation by an element of L×;

• Galois if K equals the algebra LAut(L/K) :=
{
x ∈ L

∣∣ ∀σ ∈ Aut(L/K), σ(x) = x
}
.

As we explain in Lemma 2.3, an extension L/K is inner Galois if and only if Z(L) ⊆ Z(K).
In Theorem 2.16, we give asymptotics for the number of inner Galois extensions L/K with given

degree n and given center Z = Z(L) that satisfy the discriminant bound d(L/Z) ≤ X. These
asymptotics take the form CX1/a(logX)b−1 for explicitly given constants a and b, and for a real
number C which is positive unless no inner Galois extension of K of degree n with center Z exists.

Fixing the center lets us reduce the problem to a question about central simple Z-algebras. The
count of all inner Galois extensions of K of degree n (with any center) can in principle be obtained
by summing the resulting asymptotics over the finitely many subfields Z of Z(K).
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In the case K = Z(K) = Z, the extensions we are counting are exactly the central simple Z-
algebras of degree n satisfying the discriminant bound d(L/Z) ≤ X. This special case of Theorem 2.16
was already established in [LMPT18, Theorem 1.5 and Lemma 3.2].

Previous work on this question also includes [FKS81, Corollary 4], where (combined with [Stacks,
Theorem 074Z]) the authors prove that infinitely many central simple Z-algebras L contain a given
commutative field extension K = Z(K) of Z as a maximal subfield (i.e., [L : Z] = [K : Z]2). The
definition of the main exponent 1/a in our final asymptotics relies on a group-theoretical lemma they
prove to this end (Lemma 2.8).

Our proof strategy is similar to that of [LMPT18]: we reduce the problem to counting central
simple Z-algebras satisfying certain local conditions, we parametrize these algebras by elements of
the Brauer group Br(Z), and we set up a Dirichlet series counting them. The local-global principle
for Brauer groups lets us write the Dirichlet series as a sum of finitely many Euler products. Finally,
we determine its rightmost “pole” by comparison with Artin L-functions and apply a Tauberian
theorem to prove Theorem 2.16. Additional computations ensure that the leading coefficients of our
asymptotics are positive when there is at least one such extension. We also give the asymptotics
when K is a division algebra and we count only extensions which are division algebras.

We also prove Theorem 2.20, which is a variant of Theorem 2.16 in which discriminants are
replaced by products of ramified primes. The proof strategy is identical.

1.2.2. Outer extensions. An extension L of K is outer if it has no nontrivial inner automorphisms.
In Section 3, we prove Theorem 3.3, which shows that outer extensions L/K are exactly those
of the form L = F ′ ⊗Z(K) K for a field extension F ′ of Z(K). This generalizes a theorem of
Deschamps and Legrand [DL20, Corollaire 2]. A consequence of this theorem is that the problem of
counting outer extensions ofK reduces to the notoriously difficult problem of counting field extensions
of Z(K). Additional computations let us characterize extensions which are division algebras and
compute discriminants in terms of invariants of the extension F ′/Z(K) (Theorem 3.6). We give a
few applications of these ideas in Subsection 3.3.

1.2.3. General extensions. In Section 4, we briefly discuss the possibility of adapting the methods
of Sections 2 and 3 in order to count more general extensions L/K by decomposing them into inner
and outer extensions. We highlight a few helpful facts, but also analytic difficulties specific to this
problem.

1.3. Preliminaries and notation

1.3.1. Brauer groups of local and global fields.

Central simple algebras. In this article, simple algebras are systematically assumed to be finite-
dimensional over their center. If F is a field and K is a central simple F -algebra, we denote by
[K] ∈ Br(F ) the class of K in the Brauer group of F . The index of K is the integer ind(K) such
that K is isomorphic to a matrix algebra over a central division F -algebra of dimension ind(K)2.
Note that K is a division algebra if and only if [K : F ] = ind(K)2. The exponent of K is the
order of [K] in Br(F ). When F is a global or local field, which is systematically true in this article,
the exponent of K equals its index [Rei03, (31.4), (32.19)] (see [DesInd] for counterexamples in the
general case).

Brauer groups of local fields. Brauer groups of local fields admit explicit descriptions:

• The Brauer group of C is trivial. We identify it with the trivial subgroup of Q/Z via the trivial
group homomorphism inv : Br(C)→ Q/Z.
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• The Brauer group of R is isomorphic to Z/2Z, generated by the class of the algebra of Hamilton
quaternions over R. We identify it with the subgroup {0, 1

2} of Q/Z via the group homomor-
phism inv : Br(R)→ Q/Z mapping the nontrivial element to 1

2 .

• If F is a non-archimedean local field, then there is an isomorphism inv : Br(F ) ∼→ Q/Z [Rei03,
(31.8)].

The Hasse invariant of a central simple algebra over a local field is the image in Q/Z of its class.

Brauer groups of global fields. Assume that F is a global field. If K is a central simple F -
algebra and v is a place of F , we denote by Fv the completion of F at v and by Kv := K ⊗F Fv the
completion of K at v, which is a central simple algebra over the local field Fv. We call the element
inv(Kv) ∈ Q/Z the local invariant of K at v.

Let P be the set of all places of F . The local-global principle for Brauer groups of global fields
(the Albert–Brauer–Hasse–Noether theorem) is summed up by the exact sequence [Rei03, (32.13)]:

1→ Br(F )→
⊕
v∈P

Br(Fv) −→∑
v
invv

Q/Z→ 1 (1.1)

where ∑
v
invv is the sum in Q/Z of the Hasse invariants of the coordinates of an element of⊕

v∈P Br(Fv). In particular, a central simple F -algebra is uniquely determined (up to isomorphism)
by its dimension M2 and by the collection of its local invariants in Q/Z (indexed by places of F ),
on which the only constraints are the following:

• all local invariants have order dividing M in Q/Z;

• all but finitely many local invariants are trivial;

• the local invariants at complex places are trivial;

• the local invariants at real places are either trivial or equal to 1
2 ;

• the sum of the local invariants over all places of F is trivial.

1.3.2. Terminology and notation. If S is a finite set, we denote by |S| its cardinality. We denote
by e : C→ C the function z 7→ exp(2πiz). If R is a ring, we denote by Mn(R) the algebra of n× n
matrices over R and by EndR(A) the algebra of endomorphisms of a (left or right) R-module A. We
denote by ||p|| the norm of a prime p of a number field F .

For n ∈ N, we see Z/nZ as a subgroup of Q/Z, namely that of elements whose order divides n:
if a ∈ Z/nZ, we denote by a

n the corresponding element of Q/Z. When speaking about elements of
Z/nZ, the phrases “a divides b”, “a is the greatest common divisor (resp. the least common multiple)
of b and c” and “b and c are coprime” must be interpreted as statements about the corresponding
principal ideals, identified with positive divisors of n. For instance, the greatest common divisor of b
and c is the unique positive divisor of n generating the same ideal of Z/nZ as b and c together, i.e.,
gcd

(
b̃, c̃, n

)
where b̃, c̃ ∈ N are arbitrary representatives of b, c.

If L is a Q-algebra and K is a subalgebra of L, we use the following notation:

• The centralizer CentL(K) is the subalgebra of L consisting of those elements that commute
with all elements of K;

• Inn(L/K) is the normal subgroup of Aut(L/K) consisting of inner automorphisms, i.e., those
corresponding to conjugation by an element of CentL(K)×.

Two elements of CentL(K)× induce the same inner automorphism if and only if they differ by an
element of the center of L. Therefore, Inn(L/K) ≃ CentL(K)×/Z(L)×.
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1.4. Discriminants

We associate to an extension L/K of simple Q-algebras a number d(L/K), which we use as a
substitute for the absolute value of the norm of the relative discriminant of L over K. When L/K
is an extension of number fields, d(L/K) has precisely that meaning.

1.4.1. The case K ⊆ Z(L). Assume that K is contained in the center of L. In this case, there is
a well-defined notion of discriminant: the number field K has a unique maximal Z-order, namely its
ring of integers OK , and one can choose a maximal OK-order Λ in L [Rei03, (10.4)]. Although Λ is
not unique in general, the discriminant of Λ/OK does not depend on the choice of Λ [Rei03, (25.3)].
Therefore, we simply denote by d(L/K) the integer obtained as the absolute value of the norm of
the discriminant of Λ/OK , for any choice of maximal order Λ in L.

First, consider the case K = Z(L). Then, L is a central simple K-algebra of some dimension m2.
For each prime p of K, let λp ∈ Z/mZ be such that inv(Lp) = λp

m . The local index mp = ind(Lp)
is the reduced denominator of this fraction, i.e., mp = m

gcd(m,λp) . By comparing dimensions, we see
that Lp is an algebra of κp × κp-matrices over a central division Kp-algebra of dimension m2

p for
κp = m

mp
. A formula for the norm of the relative discriminant of L/Z(L) follows directly from [Rei03,

(25.10)]:

d
(
L/Z(L)

)
=
(∏

p

||p||(mp−1)κp

)m
where the product is taken over primes p of Z(L). This can be rewritten in the following ways:

d
(
L/Z(L)

)
=
∏
p

||p||
m2
(

1− 1
mp

)
=
∏
p

||p||m
(
m−gcd(m,λp)

)
. (1.2)

When K is a subfield of Z(L), the computation of d(L/K) reduces to the central case using the
following “relative discriminant formula”, which is a special case of [Rei03, Exercise 25.1a]:

d(L/K) = d
(
L/Z(L)

)
· d
(
Z(L)/Z(K)

)[L:Z(L)]
. (1.3)

1.4.2. A general definition. To measure the “size” of a general extension of simple Q-algebras,
we use the following quantity, which is both natural (cf. Proposition 1.4) and mysterious (cf. Re-
mark 1.5):

Definition 1.3. Let L/K be an extension of simple Q-algebras. We denote by d(L/K) the following
positive rational number:

d(L/K) = d(L/Q)
d(K/Q)[L:K] .

Proposition 1.4. Definition 1.3 is the only possible definition of a height d(L/K) which coincides
with the norm of the relative discriminant when K ⊆ Z(L), and which satisfies the relative discrim-
inant formula d(M/K) = d(M/L)d(L/K)[M :L] for every tower of extensions M/L/K.

Proof. The uniqueness follows from the case K = Q of the relative discriminant formula for an
arbitrary extension M/L. The relative discriminant formula for a tower M/L/K of extensions
follows formally from the “usual” relative discriminant formula for commutative fields combined
with Equation (1.3).

Remark 1.5. The number d(L/K) is in general not an integer. For example, no prime but 2 is
ramified in the Q-algebra L = Q(i, j, k) of Hamilton quaternions, so d(L/Q) is a power of 2, but L
contains the commutative subfield K = Q(i+j+k) ≃ Q(

√
−3) in which 3 is ramified, so 3 | d(K/Q).

Hence, the denominator of d(L/K) is divisible by 3.
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2. Inner Galois extensions

In this section, we state and prove Theorem 2.16, which gives asymptotics for the distribution of
inner Galois extensions of a given (finite-dimensional) simple Q-algebra, of fixed degree and center.

Subsection 2.1 contains useful lemmas concerning inner Galois extensions. In Subsection 2.2, we
fix some notation and state the main theorem, Theorem 2.16.

The proof of Theorem 2.16 is divided into Subsections 2.3 to 2.7: in Subsection 2.3, we rephrase
the problem in combinatorial terms; in Subsection 2.4, we set up the Dirichlet series for this counting
problem; in Subsection 2.5, we describe analytic properties of the Dirichlet series and apply a Taube-
rian theorem; in Subsection 2.6, we check that the leading coefficient in our estimates is positive
under the assumption that an extension exists (this proves the main statement Theorem 2.16 (i));
finally, in Subsection 2.7, we establish Theorem 2.16 (ii), which is the result when one excludes
extensions which are not division algebras.

In Subsection 2.8, we explain how to adapt the proof in order to prove Theorem 2.20, a variant
of Theorem 2.16 where the height by which we count is the product of ramified primes. Finally, in
Subsection 2.9, we give criteria for the existence of an extension as in Theorem 2.16.

2.1. General facts about inner Galois extensions

In this subsection, we establish general properties of inner Galois extensions. We begin with a
characterization (Lemma 2.3), explain why inner Galois extensions of a simple algebra K with
center Z can be identified with central simple Z-algebras in which K embeds (Proposition 2.4), and
prove a criterion to decide whether there is an embedding between two simple algebras (Lemma 2.5).

We first prove the two following lemmas, which are not specific to inner Galois extensions:

Lemma 2.1. Let K be a (finite-dimensional) algebra over an infinite field F . For every x ∈ K,
there is a λ ∈ F such that x− λ is invertible.

Proof. Embedding K into an algebra of matrices over F lets one see x as a square matrix with
coefficients in F . Since its characteristic polynomial has finitely many roots and F is infinite, there
is an element λ ∈ F such that x− λ is invertible.

Lemma 2.2. Let L/K be an extension of simple Q-algebras. Then LInn(L/K) = CentL(CentL(K)).

Proof. Elements of Inn(L/K) are given by conjugation by elements of CentL(K)×. Thus, LInn(L/K) =
CentL(CentL(K)×). In particular, CentL(CentL(K)) ⊆ LInn(L/K). Conversely, if x ∈ LInn(L/K) and
y ∈ CentL(K), use Lemma 2.1 to pick a λ ∈ Q such that y − λI ∈ CentL(K)×; since x belongs to
LInn(L/K) = CentL(CentL(K)×), it commutes with y − λI and thus with y.

The following lemma characterizes inner Galois extensions in a simple manner:

Lemma 2.3. An extension L/K of simple Q-algebras is inner Galois if and only if Z(L) ⊆ Z(K).

Proof.

(⇒) Since L/K is inner Galois, we have K = LInn(L/K) Lem.2.2= CentL(CentL(K)). Hence:

Z(L) ⊆ CentL(K) ∩ CentL(CentL(K)) = CentL(K) ∩K = Z(K).
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(⇐) By the Skolem–Noether theorem, the extension L/Z(L) is inner. Since K contains Z(K) and
thus Z(L), this implies that L/K is also inner. Proving that L/K is Galois then amounts to
proving that the Z(L)-algebra K equals LInn(L/K), which is CentL(CentL(K)) by Lemma 2.2.
The equality K = CentL(CentL(K)) follows from the centralizer theorem [Stacks, Theo-
rem 074T].

Proposition 2.4. The map sending an isomorphism class of inner Galois extensions L/K with
center Z (as defined in Definition 1.1) to the isomorphism class of L as a Z-algebra (forgetting about
the embedding K ↪→ L) is injective.

Proof. Let L1, L2 be central simple Z-algebras, isomorphic via an isomorphism i : L1
∼→ L2, and in

which K embeds respectively via embeddings e1 and e2. By the form of the Skolem–Noether theorem
given in [Stacks, Theorem 074Q], there is an (inner) automorphism α of L2 such that α ◦ i ◦ e1 = e2.
Hence, (L1, e1) and (L2, e2) are isomorphic extensions of K in the sense of Definition 1.1.

A consequence of Proposition 2.4 is that the problem of counting inner Galois extensions ofK with
center Z can be equivalently rephrased as counting central simple Z-algebras in which K embeds.
This rephrasing is especially useful when combined with the following criterion, which lets one decide
whether a simple Z-algebra K embeds into a central simple Z-algebra L:

Lemma 2.5. Let F/Z be a field extension of degree d. Let L be a central simple Z-algebra of
dimension M2 and K be a central simple F -algebra of dimension m2. The following are equivalent:

(i) There is an embedding K ↪→ L of Z-algebras.

(ii) The number j := M
dm is an integer, and there is a central simple F -algebra R of dimension j2

such that [L⊗Z F ] = [K] + [R] in the Brauer group of F .

The degree of L over K is then n := dj2. The situation is summed up by the following diagram:

L

K

F

Z

n=dj2

M2=(dmj)2 m2

d

Proof of Lemma 2.5.

(i) ⇒ (ii) Assume that K embeds in L and see K as a subring of L via this embedding. Let
R = CentL(K). By the centralizer theorem [Stacks, Theorem 074T], R is a simple Z-algebra
of dimension M2

dm2 whose centralizer CentL(R) is K. In particular:

Z(R) = R ∩ CentL(R) = CentL(K) ∩K = Z(K) = F.

So R is a central simple F -algebra of dimension M2

d2m2 = j2. In particular, j is an integer. See L
as a right (Kop ⊗Z L)-module via the action induced by the formula λ.(a ⊗ λ′) = aλλ′ for
λ, λ′ ∈ L and a ∈ K. An endomorphism φ of the right (Kop ⊗Z L)-module L is determined
by the element φ(1). This lets us identify EndKop⊗ZL(L) with a subset of L. We let the
reader check that this subset is precisely CentL(K) = R. By [Stacks, Lemma 074F], the Z-
algebra Kop ⊗Z L is simple because both K and L are simple and Z(L) = Z. By [Stacks,
Lemma 074E (5)], the equality EndKop⊗ZL(L) = R then implies that EndR(L) = Kop ⊗Z L =
Kop⊗F

(
F ⊗ZL

)
. Moreover, EndR(L) is a matrix algebra over R by [Stacks, Lemma 074E (6)].

Therefore, the classes of Kop ⊗F
(
F ⊗Z L

)
and of R coincide in the Brauer group of F , which

implies [F ⊗Z L]− [K] = [R] and finally (ii).
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(ii) ⇒ (i) Let K ′ := K ⊗F R. By assumption, we have [L⊗Z F ] = [K ′] in the Brauer group of F .
Since dimF (L⊗ZF ) = dimZ(L) = M2 = (dmj)2 and dimF (K ′) = dimF (K)·dimF (R) = (mj)2,
this implies that L⊗Z F ≃Md(K ′).
Consider the central simple Z-algebra EndZ(K ′) ≃ MdimZ(K′)(Z). There are embeddings
K ′ ↪→ EndZ(K ′) and (K ′)op ↪→ EndZ(K ′) coming from the respective actions of K ′ on itself
via left and right multiplication. The images of these two embeddings commute as K ′ is
associative.
Let A = EndZ(K ′)⊗Z Md(Z). The embedding K ′ ↪→ EndZ(K ′) induces the following embed-
ding of L in A:

L ↪→ L⊗Z F ≃Md(K ′) ≃ K ′ ⊗Z Md(Z) ↪→ EndZ(K ′)⊗Z Md(Z) = A.

We see L as a subalgebra of A via this embedding. Let C := CentA(L). As L and A are central
simple Z-algebras, we have L⊗Z C ≃ A by [Stacks, Lemma 074U]. Since A ≃MdimZ(K′)·d(Z),
it follows that [L] = [Cop] in the Brauer group of Z. We have dimZ(L) = M2 = (dmj)2 and:

dimZ(Cop) = dimZ(C) = dimZ(A)
dimZ(L) = dimZ(K ′)2 · d2

(dmj)2 = (dm2j2)2 · d2

(dmj)2 = (dmj)2.

Therefore, there is an isomorphism L ≃ Cop.
The inclusions L ↪→ K ′ ⊗Z Md(Z) ↪→ A imply that C = CentA(L) contains CentA(K ′ ⊗Z
Md(Z)). Elements in the image of the embedding (K ′)op ↪→ EndZ(K ′) ↪→ A commute with
elements of K ′ ⊗Z Md(Z) because they come from right multiplication by elements of K ′.
Therefore, these elements belong to C. This defines an embedding (K ′)op ↪→ C, from which
we finally obtain an embedding K ↪→ K ⊗F R = K ′ =

(
(K ′)op)op

↪→ Cop ≃ L as claimed.

Remark 2.6. Several cases of Lemma 2.5 are classical:

• A commutative field extension F of Z of degreeM is contained in a central simple Z-algebra L of
dimension M2 (as a maximal subfield) if and only if it is a splitting field, i.e., L⊗ZF ≃MM (F ).
This is the case m = j = 1. Our proof of Lemma 2.5 draws inspiration from the proof of this
special case given in [Stacks, Theorem 074Z].

• Two central simple Z-algebras L and K of the same dimension M2 are isomorphic if and only
if [L] = [K] in the Brauer group of Z. This is the case d = j = 1.

• When F = Z (i.e., d = 1), Lemma 2.5 specializes to a criterion for the inclusion of a central sim-
ple Z-algebra into another. This criterion appears in [Des23, Section 5] (cf. the definition and
description of what Deschamps calls the Brauer group Br(K) of a central simple Z-algebra K):

Corollary 2.7 (Deschamps). Let Z be a field, let L be a central simple Z-algebra of dimen-
sion M2 containing a central simple Z-algebra K of dimension m2. Then, there is a central
simple Z-algebra R of dimension

(
M
m

)2
such that L ≃ R⊗Z K, namely R = CentL(K).

2.2. Notation and main theorem

In this subsection, after introducing the necessary terminology and notation, we state our main
theorem, Theorem 2.16. The notations we fix here are in effect throughout all of Section 2.
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2.2.1. The centers. We fix an extension F/Z of number fields and we let d = [F : Z]. We denote
the set of places of Z by P. For every place w of F , lying above a place v of Z, the local degree
of F/Z at w is the integer dw := [Fw : Zv].

We let G be the Galois group of the Galois closure F̂ of F/Z. The transitive action of G on the d
embeddings of F into F̂ lets us see G as a transitive subgroup of Sd. For an unramified prime p of Z,
we let Frob(p) be the conjugacy class of G consisting of the Frobenius automorphisms for primes
of F̂ above p.

For an element g ∈ G, we denote by cycgcd(g) the greatest common divisor of the sizes of all
the orbits of the action of g on {1, . . . , d}. Note that cycgcd(g) divides d, the sum of the sizes of all
orbits. Since cycgcd(g) only depends on the conjugacy class of g, we use the same notation when g
is a conjugacy class of G. Finally, we let:

U := lcm
g∈G

cycgcd(g).

Lemma 2.8. We have U ≥ 2, unless F = Z.

Proof. Assume that F ̸= Z, i.e., d ≥ 2. By a theorem of Fein, Kantor and Schacher2 [FKS81,
Theorem 1], the transitive subgroup G of Sd contains a fixed-point-free element g whose order is a
prime power pk. Its orbits all have sizes divisible by p, so p | cycgcd(g) | U .

We describe U explicitly in two special cases:

Lemma 2.9. If F/Z is Galois, then cycgcd(g) = ord(g) for all g ∈ G, and U is the exponent of G.

Proof. We have d = |G| and G ↪→ Sd is the regular embedding. The orbits of g ∈ G all have
size ord(g) and thus cycgcd(g) = ord(g). Finally, U = lcmg∈G ord(g) is the exponent of G.

Lemma 2.10. If d = pk is a prime power with k ≥ 1, then U = pk
′ for some 1 ≤ k′ ≤ k.

Proof. By Lemma 2.8, we have U ≥ 2. On the other hand, U is by definition a divisor of d.

2.2.2. The central simple algebra. We fix a central simple F -algebra K of dimension m2. For
every place w of F , we denote by κw the element of Z/mZ such that the local invariant inv(Kw) ∈ Q/Z
of K at w is κw

m .

Definition 2.11. We say that a place v of Z is exceptional if it is archimedean, or ramified in F , or
if κw ̸= 0 for some place w|v of F . We denote by Pex the finite set of exceptional places of Z.

2.2.3. The degree. We fix an integer j ≥ 1. We let n = dj2 and M = dmj. In the rest of Section 2,
our goal is to count inner Galois extensions L/K of degree n with center Z(L) = Z. If n = 1, then
d = j = 1 and there is exactly one such extension, namely the trivial extension L = K. From now
on, we exclude this case, and we assume that n ≥ 2. Since n = dj2 ≥ 2, we have j ≥ 2 or d ≥ 2. By
Lemma 2.8, it follows that Uj ≥ 2. Hence, the following definition makes sense:

Definition 2.12. We denote by u the smallest prime number dividing Uj.

Definition 2.13. We define the rational number β ∈ (0, 1] as follows:

β := 1
|G|
·
∣∣∣{g ∈ G ∣∣∣u divides j · cycgcd(g)

}∣∣∣ =
{ 1 if u|j,

1
|G| ·

∣∣∣{g ∈ G ∣∣∣u divides cycgcd(g)
}∣∣∣ otherwise.

2Thanks to Michael Giudici for pointing this theorem to us. Note that the proof of Fein, Kantor and Schacher
relies on the classification of finite simple groups.
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Note that u divides j · cycgcd(g) = M
dm/cycgcd(g) if and only if dm

cycgcd(g) divides M
u . Hence:

β = 1
|G|
·
∣∣∣∣{g ∈ G ∣∣∣∣ dm

cycgcd(g) divides M
u

}∣∣∣∣ . (2.1)

The following remarks help understand the constants u and β:
Remark 2.14. If F/Z is a Galois extension or d is a prime power, then u is the smallest prime factor
of dj by Lemmas 2.9 and 2.10. Moreover, if F/Z is Galois and u does not divide j, then β is the
proportion of elements of G whose order is divisible by u.
Remark 2.15. In the non-Galois case, the number u is not necessarily the smallest prime factor of dj.
For instance, take j = 1, Z = Q, and any number field F of degree 6 whose Galois closure has Galois
group

〈
(1 4)(2 5), (1 3 5)(2 4 6)

〉
⊆ S6, which is the transitive permutation group 6T4 in GAP

notation and is isomorphic to A4. This group contains no permutations whose cycles all have even
sizes, i.e., u ̸= 2. Instead, we have u = 3 as there are elements consisting of two 3-cycles.

2.2.4. Statement of the main theorem. Using the notation introduced above, we state the main
result of this section:

Theorem 2.16.

(i) There is a real number C ≥ 0 such that the number N(X) of inner Galois extensions L/K of
degree n = dj2 with center Z and with d(L/Z) ≤ X satisfies

N(X) ∼
X→∞

CX1/a(logX)b−1

where a = M2
(
1− 1

u

)
and b = (u− 1)β. When C = 0, this is taken to mean that there is no

such extension for any X.

(ii) The same holds if we restrict to inner Galois extensions L/K which are division algebras (with
a possibly smaller constant C).

Remark 2.17. The relative discriminants d(L/K) and d(L/Z) differ by a constant factor that only
depends on K and Z (cf. Subsection 1.4):

d(L/Z) = d(K/Z)n · d(L/K).

Hence, Theorem 2.16 continues to hold, with a different constant C, if we replace the condition
d(L/Z) ≤ X by d(L/K) ≤ X.

Proving Theorem 2.16 is the focus of Subsections 2.3 to 2.7. In Subsection 2.9, we give additional
criteria to check the existence of an extension, in order to determine whether the leading coefficient C
in Theorem 2.16 is positive.
Remark 2.18. We obtain a finer version of Theorem 2.16 where we constrain the behavior of L at
finitely many places. Let S be a finite set of places of Z and let ξ : S → Z/MZ be a map. Then,
Theorem 2.16 holds (with possibly smaller constants C) if one restricts to extensions whose local
invariants at the places v ∈ S are given by ξ(v)

M .
Remark 2.19. Our methods yield expressions for the leading coefficient C in Theorem 2.16, see
Equation (2.10) and Equation (2.11). These expressions involve an infinite product over all primes
of Z and the values at s = 1 (resp. the residue, for the trivial character) of the Artin L-functions
of the irreducible characters of G = Gal(F̂ /Z) (cf. the proof of Lemma 2.31). In Remark 2.35,
we remark that in certain cases, including the case F = Z, only the residue of the Dedekind zeta
function of Z at 1 (which is given by the class number formula) is needed.

10



2.2.5. Counting by the product of ramified primes. In [Woo10], Wood popularized the ques-
tion of counting number fields not by discriminant, but by the product of ramified primes, which
in her language is a fair counting function for abelian extensions. For any simple Q-algebra L with
center Z, we define:

ram(L) =
∏

p prime of Z
ramified in L

||p||.

In Subsection 2.8, we explain how to adapt the proof of Theorem 2.16 to count inner Galois extensions
by the product of their ramified primes. This leads to the following result:

Theorem 2.20.

(i) There is a real number C ≥ 0 such that the number N(X) of inner Galois extensions L/K of
degree n = dj2 with center Z(L) = Z and with ram(L) ≤ X satisfies

N(X) ∼
X→∞

CX(logX)b∗−1

where b∗ = j
(

1
|G|
∑
g∈G cycgcd(g)

)
− 1. When C = 0, this is taken to mean that there is no

such extension for any X.

(ii) The same holds if we restrict to inner Galois extensions L/K that are division algebras (with
a possibly smaller constant C).

Remark 2.21. We have b∗ > 0 because we have assumed that j ≥ 2 or d ≥ 2, which by Lemma 2.8
implies cycgcd(g) ≥ 2 for some g ∈ G.

2.3. Combinatorial formulation of the counting problem

In this subsection, we rephrase the counting problem combinatorially with the help of the Albert–
Brauer–Hasse–Noether theorem. First, we specialize the criterion from Lemma 2.5 to the case of
number fields:

Lemma 2.22. Let L be a central simple Z-algebra of dimension M2. For every place v of Z, let λv
be the element of Z/MZ such that inv(Lv) = λv

M . Then, the following are equivalent:

(i) There is an embedding K ↪→ L of Z-algebras.

(ii) For each place w of F , lying above a place v of Z, we have dm | dwλv − djκw in Z/MZ.

Proof. By Lemma 2.5, K embeds in L if and only if there is a central simple F -algebra R of di-
mension j2 such that [L ⊗Z F ] = [K] + [R] in Br(F ). This amounts to the condition that the
index of [L ⊗Z F ] − [K] divide j. Since index and exponent coincide, and by the exact sequence
of Equation (1.1), this means that for every place w of F , we have j · ([L ⊗Z Fw] − [Kw]) = 0 in
Br(Fw). By [Rei03, (31.9)], if w is place of F lying above a place v of Z, then inv(L⊗Z Fw) = [Fw :
Zv] · inv(Lv) = dw

λv
M . Recall also that inv(Kw) = κw

m . We finally obtain that K embeds in L if and
only if, for each place w of F , lying above a place v of Z, the following equality holds in Q/Z:

0 = j ·
(
dw
λv
M
− κw
m

)
= dwλv

dm
− jκw

m
.

This equality amounts to the divisibility dm | dwλv − djκw in Z/MZ.

We now give a combinatorial description of inner Galois extensions of K of degree n with center Z:
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Definition 2.23. Let Λ be the set of maps λ : P → Z/MZ with finite support (i.e., identically zero
outside a finite set) satisfying the following conditions:

(I) for all complex places v ∈ P, we have λ(v) = 0.

(II) for all real places v ∈ P, we have λ(v) ∈ {0, M2 } (necessarily, λ(v) = 0 if M is odd).

(III) for all places v ∈ P and all places w|v of F , we have dm | dwλ(v)− djκw in Z/MZ.

(IV)
∑
v∈P λ(v) = 0 in Z/MZ.

Let Λ′ ⊆ Λ be the set of maps that additionally satisfy:

(V) gcdv λ(v) = 1 in Z/MZ.

Theorem 2.24. There is a bijection between the set of isomorphism classes of inner Galois exten-
sions L/K of degree n = dj2 with center Z(L) = Z and the set Λ. Let L be such an extension
and λ ∈ Λ be the corresponding map. Then, L is a division algebra if and only if λ lies in Λ′.
Moreover, the norm d(L/Z) of the relative discriminant of L over its center Z equals the following
quantity d(λ), computed in terms of the map λ alone:

d(λ) :=
∏

p prime of Z
||p||

M

(
M−gcd

(
M,λ(p)

))
.

Proof. By Proposition 2.4, isomorphism classes of inner Galois extensions of K of degree n with
center Z are in bijection with equivalence classes of central simple Z-algebras of dimension M2

in which K embeds. By the characterizations of Paragraph 1.3.1, specifying a central simple Z-
algebra L of dimension M2 is the same as giving a map λ : P → Z/MZ with finite support satisfying
conditions (I), (II) and (IV) of Definition 2.23. The local invariant of L at a place v of Z is then
given by λ(v)

M ∈ Q/Z. By Lemma 2.22, the existence of an embedding of K into L is equivalent to
condition (III).

The central simple algebra L is a division algebra if and only if it has index M . Since index and
exponent coincide for central simple algebras over number fields, this is equivalent to the condition
that the invariants inv(Lv) have least common denominator M , which is in turn equivalent to (V).

The formula for the discriminant follows from Paragraph 1.4.1.

For non-exceptional places, the condition (III) of Definition 2.23 takes a much simpler form:

Lemma 2.25. Let v ∈ P \ Pex. Then, condition (III) of Definition 2.23 holds for all w|v if and
only if dm

cycgcd(Frob(v)) divides λ(v).

Proof. Since the prime v is not exceptional, we have κw = 0 for primes w|v of F . Thus, con-
dition (III) amounts to λ(v) being a multiple of dm

gcd(dm,dw) for all w|v. This means that λ(v) is
a multiple of lcmw|v

dm
gcd(dm,dw) = dm

gcdw|v gcd(dm,dw) . Since gcdw|v dw divides
∑
w|v dw = d, we have

gcdw|v gcd(dm, dw) = gcdw|v dw. To conclude, it remains to show that gcdw|v dw = cycgcd(Frob(v)).
Since the prime v is non-exceptional, it is unramified in F . Pick a representative g ∈ G of the

conjugacy class Frob(v). Orbits of the action of g on {1, . . . , d} correspond bijectively to primes w|v
of F , and the size of an orbit is the corresponding local degree dw. Hence, gcdw|v dw is the greatest
common divisor of the sizes of the orbits of g. By definition, this is cycgcd(Frob(v)).
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2.4. Setting up the Dirichlet series

In this subsection, we set up a Dirichlet series for the counting problem and rewrite it as a sum of
Euler products.

We fix a divisor τ of M , which is used in Subsection 2.7 to sieve out extensions which are not
division algebras. (For proving just part (i) of Theorem 2.16, one can take τ = 1.)

Let S be a finite set of places of Z containing Pex. Let ξ be a map S → Z/MZ satisfying
conditions (I)–(III) of Definition 2.23 for all v ∈ S, and such that τ divides ξ(v) for all v ∈ S. Define

σξ :=
∑
v∈S

ξ(v)

and let d(ξ) denote the contribution of places in S to the discriminant:

d(ξ) :=
∏
p∈S
||p||

M

(
M−gcd

(
M, ξ(p)

))
.

Let ΛS,ξ,τ ⊆ Λ be the set of maps λ : P → Z/MZ in Λ whose restriction to S is ξ and such that τ
divides λ(v) for all places v ∈ P. Via the bijection of Theorem 2.24, elements of ΛS,ξ,τ correspond to
isomorphism classes of central simple Z-algebras of dimension M2 in which K embeds, whose local
invariants at places v ∈ S are given by ξ(v)

M , and whose index divides M
τ . Moreover, if λ ∈ ΛS,ξ,τ

and L/K is the corresponding extension, then d(L/Z) = d(λ). We are thus led to count maps
λ ∈ ΛS,ξ,τ with d(λ) ≤ X. For this, we introduce the Dirichlet series:

fS,ξ,τ (s) =
∑

λ∈ΛS,ξ,τ

d(λ)−s.

To specify a map λ ∈ ΛS,ξ,τ , we only need to specify its restriction to P \ S. Unraveling definitions
and using Lemma 2.25, this lets us write:

fS,ξ,τ (s) = d(ξ)−s ∑
(see below)

∏
p∈P\S
λ(p)̸=0

||p||
−sM

(
M−gcd

(
M,λ(p)

))
. (2.2)

where the sum is taken over finitely supported maps λ : P \ S → Z/MZ such that:

(i) σξ +
∑
p∈P\S λ(p) = 0 in Z/MZ

(ii) for all primes p ∈ P \ S, both τ and dm
cycgcd(Frob(p)) divide λ(p)

We encode condition (i) by the character sum

1
M

M−1∑
k=0

e

 k

M

σξ +
∑

p∈P\S
λ(p)

 = 1
M

M−1∑
k=0

e
(
kσξ
M

) ∏
p∈P\S
λ(p)̸=0

e
(
kλ(p)
M

)
.

which equals 1 if (i) holds and 0 otherwise. We also let ητ,p := lcm( dm
cycgcd(Frob(p)) , τ), so that

condition (ii) rewrites as ητ,p|λ(p). Plugging this into Equation (2.2) lets us write the Dirichlet series
as a finite sum of Euler products:

fS,ξ,τ (s) = d(ξ)−s

M

M−1∑
k=0

e
(
kσξ
M

) ∏
p∈P\S

∑
λ∈Z/MZ
ητ,p|λ

e
(
kλ

M

)
||p||−sM

(
M−gcd(M,λ)

) . (2.3)
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We give a name to the Euler factor:

fτ,k,p(s) :=
∑

λ∈Z/MZ
ητ,p|λ

e
(
kλ

M

)
||p||−sM

(
M−gcd(M,λ)

)
.

Equation (2.3) then rewrites as:

fS,ξ,τ (s) = d(ξ)−s

M

M−1∑
k=0

e
(
kσξ
M

) ∏
p∈P\S

fτ,k,p(s). (2.4)

Split up the sum defining fτ,k,p(s), grouping values of λ according to the greatest common divisor
g = gcd(M,λ), which must satisfy ητ,p | g and g |M , and writing λ = gλ′ with λ′ ∈

(
Z/Mg Z

)×
. We

have:

fτ,k,p(s) =
∑

g≥1 such that
ητ,p|g and g|M

∑
λ′∈
(
Z/M

g
Z
)×

e
(
kgλ′

M

)
||p||−sM(M−g)

= 1 +
∑

1≤g<M such that
ητ,p|g and g|M

∑
λ′∈
(
Z/M

g
Z
)×

e
(
kgλ′

M

)
||p||−sM(M−g).

Finally, for g|M , define

gk

(
M

g

)
=

∑
λ′∈(Z/M

g
Z)×

e
(
kgλ′

M

)

so that
fτ,k,p(s) = 1 +

∑
1≤g<M such that
ητ,p|g and g|M

gk

(
M

g

)
||p||−sM(M−g). (2.5)

Remark 2.26. The multiplicative function gk takes the following value at an arbitrary M
g dividing M :

gk

(
M

g

)
=

φ
(
M
g

)
φ
(

M
gcd(gk,M)

) · µ( M

gcd(gk, M)

)
.

For instance, the function g0 is Euler’s totient function φ, and g1 is the Möbius function µ.

2.5. Analytic properties of the Dirichlet series

All notations are as in the previous subsection. We define a = M
(
M − M

u

)
as in Theorem 2.16. Our

goal is to describe the behavior of the Euler products
∏
p∈P\S fτ,k,p(s) in the half-plane {ℜ(s) ≥ 1

a}.
We first show that the most significant term in each Euler factor fτ,k,p(s) is determined by the
Frobenius automorphism associated to p (Lemma 2.27). We later use this information to relate the
analytic properties of

∏
p fτ,k,p(s) to those of a product of powers of the Artin L-functions associated

to the field extension F̂ /Z (Lemma 2.29 and Lemma 2.31). We then obtain asymptotics for the
distribution of inner Galois extensions of L/K with degree n and center Z using Delange’s Tauberian
theorem (Corollary 2.34). This establishes most of Theorem 2.16 (i), the only missing point being
that the leading coefficient is positive when such an extension exists.

Let ψτ,k : G→ C be the following class function:

ψτ,k(g) :=

gk(u) if lcm
(

dm
cycgcd(g) , τ

)
divides M

u ,

0 otherwise.
(2.6)

We use ψτ,k to approximate the Euler factor fτ,k,p(s) as follows:
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Lemma 2.27. There is a constant ε > 0 such that, for ℜ(s) ≥ 1
a :

fτ,k,p(s) = 1 + ψτ,k
(
Frob(p)

)
||p||−as +O

(
||p||−(1+ε)as

)
,

where both ε and the implied constant in the O-term are independent of p and s.

Proof. Consider the expression of fτ,k,p(s) given in Equation (2.5). If a proper divisor g of M occurs
for a summand in fτ,k,p(s), then M

g divides M
ητ,p

, which divides M
dm/cycgcd(Frob(p)) = j ·cycgcd(Frob(p)),

which divides jU . By definition, the smallest divisor of jU besides 1 is u. Hence, the largest occurring
proper divisor g of M is at most M

u . The corresponding summand, if it occurs, is gk(u)||p||−as. It
follows that, for some ε > 0:

fτ,k,p(s) =

1 + gk(u)||p||−as +O
(
||p||−(1+ε)as

)
if ητ,p | Mu

1 +O
(
||p||−(1+ε)as

)
otherwise

= 1 + ψτ,k
(
Frob(p)

)
||p||−as +O

(
||p||−(1+ε)as

)
.

An analytic lemma. We now prove Lemma 2.29, in which we approximate “Frobenian” Eu-
ler products using products of Artin L-functions. (See [FLN22, Section 2] for an introduction to
Frobenian functions.) This is used later to analyze the behavior of

∏
p fτ,k,p(s).

Definition 2.28. When z is a complex number, we define the holomorphic non-vanishing function
s 7→ (s − 1)z on the open half-plane {ℜ(s) > 1} as s 7→ exp(z log(s − 1)), where log is the unique
determination of the complex logarithm on the open half-plane {ℜ(s) > 0} taking real values on the
positive real half-line.

Consider any irreducible representation ρ of G and let χ : G→ C be the corresponding character.
It is well-known that the Artin L-function L(ρ, s) is holomorphic non-vanishing for ℜ(s) ≥ 1, except
for a simple pole at s = 1 when ρ is the trivial representation. (See [Hei67, p. 225].) For every
place p ∈ P, let hχ,p(s) be the Euler factor at p in the Euler product defining the L-function L(ρ, s)
(cf. [Neu13, Chap. VII, (10.1)]), so that L(ρ, s) =

∏
p∈P hχ,p(s). By definition, the Euler factors

hχ,p(s) are holomorphic and non-vanishing for ℜ(s) > 0, and the product
∏
p∈P hχ,p(s) is absolutely

convergent when ℜ(s) > 1. When p ∈ P is an unramified prime, the Euler factor is given by

hχ,p(s) = det
(
I − ρ

(
Frob(p)

)
||p||−s

)−1
.

Expanding the characteristic polynomial, we obtain the following estimate for ℜ(s) ≥ 1
2 :

hχ,p(s) =
(
1− tr

(
ρ(Frob(p))

)
||p||−s +O

(
||p||−2s))−1

= 1 + tr
(
ρ(Frob(p))

)
||p||−s +O

(
||p||−2s)

= 1 + χ(Frob(p))||p||−s +O
(
||p||−2s).

We now consider an arbitrary class function ψ : G → C. We define its average as its inner product
with the trivial character:

avg(ψ) := 1
|G|

∑
g∈G

ψ(g).

Recall that ψ decomposes as a sum over the finitely many irreducible characters χ of G:

ψ =
∑
χ

⟨ψ, χ⟩χ.
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We extend the definition of hψ,p to class functions ψ which are not irreducible characters, by setting

hψ,p :=
∏
χ

h⟨ψ,χ⟩
χ,p

in which the power is interpreted as follows: for every irreducible character χ, the function hχ,p is holo-
morphic non-vanishing on the open simply connected subset {ℜ(s) > 0}, and thus admits a logarithm
log hχ,p; note that hχ,p(s) −→

s→∞
1 and choose the logarithm specifically so that log hχ,p(s) −→

s→∞
0,

which uniquely determines it; now set h⟨ψ,χ⟩
χ,p = exp(⟨ψ, χ⟩ log hχ,p).

Lemma 2.29. Let ψ be a class function G→ C. Then:

(i) hψ,p is holomorphic non-vanishing on the open half-plane {ℜ(s) > 0} for all places p ∈ P.

(ii) For ℜ(s) ≥ 1
2 , and all unramified primes p ∈ P,

hψ,p(s) = 1 + ψ
(
Frob(p)

)
||p||−s +Oψ

(
||p||−2s

)
where the implied constant in the O-term is independent of both p and s.

(iii) The product (s− 1)avg(ψ)∏
p∈P hψ,p(s), which is absolutely convergent for ℜ(s) > 1, extends to

a holomorphic non-vanishing function hψ on the closed half-plane {ℜ(s) ≥ 1} with

hψ(1) = (Ress=1ζZ(s))avg(ψ) ∏
χ̸=1

L(χ, 1)⟨ψ,χ⟩.

Proof. We have shown these properties for irreducible characters ψ = χ above. Now, consider an
arbitrary class function ψ =

∑
χ ⟨ψ, χ⟩χ. Point (i) follows immediately from the definition. For (ii),

we compute

hψ,p(s) =
∏
χ

(
1 + χ(Frob(p))||p||−s +O

(
||p||−2s))⟨ψ,χ⟩

= 1 +
∑
χ

⟨ψ, χ⟩χ(Frob(p))||p||−s +O
(
||p||−2s)

= 1 + ψ(Frob(p))||p||−s +O
(
||p||−2s).

For (iii), note that

(s− 1)avg(ψ) ∏
p∈P

hψ,p(s) = (s− 1)⟨ψ,1⟩ ∏
p∈P

∏
χ

h⟨ψ,χ⟩
χ,p (s) = h

⟨ψ,1⟩
1 ·

∏
χ̸=1

h⟨ψ,χ⟩
χ .

Each of the finitely many factors extends to a holomorphic non-vanishing function on the closed
half-plane {ℜ(s) ≥ 1} as shown above. This establishes (iii) with hψ =

∏
χ h

⟨ψ,χ⟩
χ .

Remark 2.30. A very similar result can be found in [FLN22, Proposition 2.3], with essentially the
same proof. The main difference is that they use Euler factors of the form 1+ψ(Frob(p))||p||−s, which
(as they point out in their Remark 2.4) can vanish for small primes. They therefore need to exclude
all primes p with ||p|| ≤ maxg∈G |ψ(g)|, which would be somewhat inconvenient for us. Moreover,
our expression for hψ(1) is a finite product, whereas the expression in [FLN22, Equation (2.5)] is an
infinite product that is only conditionally convergent.
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Application. Denote by hψτ,k
the function associated as in Lemma 2.29 (iii) to the class func-

tion ψτ,k from Equation (2.6).
Lemma 2.31. The function

f̃S,τ,k(s) := (s− 1)avg(ψτ,k) ∏
p∈P\S

fτ,k,p
(
s

a

)
(2.7)

extends to a non-vanishing holomorphic function on the closed half-plane {ℜ(s) ≥ 1}, given by the
expression:

f̃S,τ,k(s) = hψτ,k
(s)

∏
p∈S

hψτ,k,p(s)
−1

 ∏
p∈P\S

fτ,k,p
(
s

a

)
hψτ,k,p(s)

−1

 . (2.8)

in which the infinite product is absolutely convergent on the closed half-plane {ℜ(s) ≥ 1}.
Proof. For ℜ(s) > 1, the expression for f̃S,τ,k(s) in Equation (2.8) follows directly from unfolding
the definition of hψτ,k

(Lemma 2.29 (iii)). The first factor hψτ,k
is holomorphic non-vanishing on the

closed half-plane {ℜ(s) ≥ 1} by Lemma 2.29 (iii). The second factor (the product over primes in S)
is holomorphic non-vanishing on the open half-plane {ℜ(s) > 0} as a finite product of such functions,
cf. Lemma 2.29 (i). We now check that the third factor, which is an infinite product, is absolutely
convergent on the closed half-plane {ℜ(s) ≥ 1}. To this end, we describe the asymptotic behavior of
its factors as ||p|| → ∞. By Lemma 2.27, we have:

fτ,k,p(s) = 1 + ψτ,k(Frob(p))||p||−as +O(||p||−(1+ε)as).

Any prime not in S is unramified, thus by Lemma 2.29 (ii), we have:

hψτ,k,p(s) = 1 + ψτ,k
(
Frob(p)

)
||p||−s +O

(
||p||−2s

)
.

Therefore:

fτ,k,p
(
s

a

)
hψτ,k,p(s)

−1 = 1 +O
(
||p||− min(2, 1+ε)s).

Hence, the infinite product in Equation (2.8) is absolutely convergent on the open half-plane {ℜ(s) >
1

min(2, 1+ε)}.

Remark 2.32. Lemma 2.31 can be interpreted as saying that
∏
p∈P\S fτ,k,p(s) has its rightmost “pole”

at s = a, and that the “order” of this “pole” is the rational number avg(ψτ,k). However, a is often
not an actual pole as the infinite product is not meromorphic on the closed half-plane when avg(ψτ,k)
is not an integer.

Since u is a prime number, the number gk(u) is easy to compute:

gk(u) =
∑

λ′∈(Z/uZ)×

e
(
kλ′

u

)
=

 ∑
λ′∈Z/uZ

e
(
kλ′

u

)− 1 =
{
u− 1 if u|k
−1 otherwise. (2.9)

Lemma 2.33. Let k ∈ {0, . . . ,M − 1}. For τ = 1, we have:

avg(ψ1,k) =
{

(u− 1)β if u|k,
−β otherwise

and, for any τ |M , we have avg(ψτ,k) ≤ (u− 1)β.
Proof. By Equation (2.6), we have

avg(ψτ,k) = 1
|G|

∑
g∈G

ψτ,k(g) = gk(u)
|G|

∣∣∣∣{g ∈ G ∣∣∣∣ lcm
(

dm

cycgcd(g) , τ
)

divides M
u

}∣∣∣∣ .
The claims follow using Equation (2.9) and Equation (2.1).
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Application of Delange’s Tauberian theorem. We have the following expression for the Dirich-
let series fS,ξ,τ counting elements of ΛS,ξ,τ by discriminant:

fS,ξ,τ (s) = d(ξ)−s

M

M−1∑
k=0

e
(
kσξ
M

) ∏
p∈P\S

fτ,k,p(s) by Equation (2.4)

= d(ξ)−s

M

M−1∑
k=0

e
(
kσξ
M

)
f̃S,τ,k(as)(as− 1)−avg(ψτ,k) by Equation (2.7).

This already implies a weak form of Theorem 2.16 (i):

Corollary 2.34. We have the asymptotic estimate:

|{λ ∈ ΛS,ξ,τ | d(λ) ≤ X}| = CS,ξ,τX
1/a log(X)(u−1)β−1 + o

(
X1/a log(X)(u−1)β−1

)
where

CS,ξ,τ = 1
a(u−1)β−1 · Γ

(
(u− 1)β

) · d(ξ)−1/a

M

∑
0≤k≤M−1

avg(ψτ,k)=(u−1)β

e
(
kσξ
M

)
f̃S,τ,k(1). (2.10)

Proof. We apply Delange’s Tauberian theorem [Del54, Théorème III] as follows: Let

α(t) := |{λ ∈ ΛS,ξ,τ | d(λ) ≤ et}|,

so that the function f(s) in Delange’s notation is

f(s) =
∫ ∞

0
e−stα(t)dt = s−1 ∑

λ∈ΛS,ξ,τ

d(λ)−s = s−1fS,ξ,τ (s)

= s−1d(ξ)−s

M

M−1∑
k=0

a−avg(ψτ,k)e
(
kσξ
M

)
f̃S,τ,k(as)

(
s− 1

a

)−avg(ψτ,k)
.

By Lemma 2.33, the largest value taken by avg(ψτ,k) is (u − 1)β. Hence, in Delange’s notation,
ω = (u − 1)β, and the function g(s) in front of the factor (s − 1

a)−(u−1)β is obtained by summing
over values of k at which this maximal average is reached:

g(s) = s−1a−(u−1)β d(ξ)−s

M

∑
0≤k≤M−1

avg(ψτ,k)=(u−1)β

e
(
kσξ
M

)
f̃S,τ,k(as).

Then, Delange’s theorem implies:

|{λ ∈ ΛS,ξ,τ | d(λ) ≤ X}|
= α(logX)

=
(

g( 1
a)

Γ((u− 1)β) + o(1)
)
X1/a log(X)(u−1)β−1

=

 1
a(u−1)β−1Γ

(
(u− 1)β

) · d(ξ)−1/a

M

∑
0≤k≤M−1

avg(ψτ,k)=(u−1)β

e
(
kσξ
M

)
f̃S,τ,k(1) + o(1)

X1/a log(X)(u−1)β−1.

(Technically, Delange only states the asymptotic equivalence α(logX) ∼ CX1/a log(X)(u−1)β−1,
assuming that the resulting constant C is nonzero. However, one can check that the claim α(logX) =
(C + o(1))X1/a log(X)(u−1)β−1 follows in the same way, even when C = 0. Alternatively, one can
apply Delange’s theorem to two functions f1(s) and f2(s) with f(s) = f1(s)−f2(s) and such that f2(s)
has a positive constant C2, and then subtract the resulting asymptotic statements. There are many
sources of such functions f1(s), f2(s): for example one can take f2(s) :=

∏
p∈P\S f1,0,p(s).)

18



The real number CS,ξ,τ is nonnegative because of its combinatorial interpretation. However, at
this point, we have not established that CS,ξ,τ is nonzero: proving this fact (under the assumption
that an extension indeed exists) is the focus of Subsection 2.6, and is the only piece of Theorem 2.16 (i)
that is still missing.

Note that Equation (2.8) gives an expression for f̃S,τ,k(1) which can be used to compute CS,ξ,τ :

f̃S,τ,k(1) = hψτ,k
(1)

∏
p∈S

hψτ,k,p(1)−1

 ∏
p∈P\S

fτ,k,p
(1
a

)
· hψτ,k,p(1)−1

 . (2.11)

The value of hψτ,k
(1) can itself be computed from the values (resp. residue for the trivial character)

at s = 1 of the Artin L-functions associated to the irreducible characters of G, cf. Lemma 2.29 (iii).
Remark 2.35. An interesting special case arises when ψτ,k = avg(ψτ,k) ∈ C is a constant class function
(i.e., a multiple of the trivial character) — this is in particular always the case if F = Z. In that case,
we can use the expression for the residue Ress=1ζZ(s) of the Dedekind zeta function of Z at s = 1
given by the class number formula (for instance, it is 1 if Z = Q) to get a more concrete expression
for f̃S,τ,k(1) (and hence for the leading coefficient CS,ξ,τ ):

f̃S,τ,k(1) =

(Ress=1ζZ(s)
)
·
∏
p∈S

(
1− 1
||p||

)ψτ,k
 ∏
p∈P\S

fτ,k,p
(1
a

)
·
(

1− 1
||p||

)ψτ,k

 .
2.6. Positivity of the leading coefficient

All notations are as in the previous subsection, and moreover we fix τ = 1. We also assume that there
exists an inner Galois extension L/K of degree n with Z(L) = Z whose local invariants at places v ∈ S
are given by ξ(v)

M , and we denote by λ0 the finitely supported map P → Z/MZ corresponding to
this extension. (We refer to Theorem 2.37 for criteria to check whether such an extension exists.)
Our strategy to prove that the leading coefficient CS,ξ,1 in Corollary 2.34 is nonzero relies on the
following lemma:

Lemma 2.36. If S′ is a finite set of places containing S, and ξ′ : S′ → Z/MZ is a map extending ξ,
then CS′,ξ′,1 ≤ CS,ξ,1. In particular, if CS′,ξ′,1 is nonzero, then CS,ξ,1 is nonzero.

Proof. When we extend S and ξ, we are putting more constraints on the extensions we are counting
and therefore there are fewer of them, i.e., ΛS′,ξ′,1 ⊆ ΛS,ξ,1. This implies that:∣∣{λ ∈ ΛS′,ξ′,1

∣∣ d(λ) ≤ X
}∣∣ ≤ |{λ ∈ ΛS,ξ,1 | d(λ) ≤ X}|

and thus CS′,ξ′,1 ≤ CS,ξ,1 by Corollary 2.34.

Instead of defining a new set S′ and a map ξ′ : S′ → Z/MZ, we use the notational shortcut of
repeatedly adding places to S and extending ξ, until we can ensure that CS,ξ,1 is positive. Recall
from Equation (2.10) and Lemma 2.33 that:

CS,ξ,1 = 1
a(u−1)β−1 · Γ

(
(u− 1)β

) · d(ξ)−1/a

M

∑
0≤k≤M−1

u|k

e
(
kσξ
M

)
· f̃S,1,k(1).

Note also that, as soon as u|k, the class function ψ1,k defined in Equation (2.6) does not depend
on k. For this reason, we simply let ψ := ψ1,0. By Equation (2.8), we have for u|k:

f̃S,1,k(1) = hψ(1)

∏
p∈S

hψ,p(1)−1

 ∏
p∈P\S

f1,k,p

(1
a

)
· hψ,p(1)−1

 .
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Since the infinite product converges absolutely (Lemma 2.31), we have:∏
p∈P\S
||p||>κ

(
f1,k,p

(1
a

)
· hψ,p(1)−1

)
−→
κ→∞

1.

Fix any ε ∈ (0, 1), and choose κ such that, for all 0 ≤ k ≤M − 1 with u | k, we have:∣∣∣∣∣∣∣∣∣1−
∏

p∈P\S
||p||>κ

f1,k,p

(1
a

)
· hψ,p(1)−1

∣∣∣∣∣∣∣∣∣ ≤ ε.
Add to S all the primes p with ||p|| ≤ κ which are not already in S, extending ξ by setting ξ(p) = λ0(p).
Now, define the following nonzero number:

c = hψ(1)

∏
p∈S

hψ,p(1)−1


so that, for some complex numbers ε̃k of absolute value at most ε, we have f̃S,1,k(1) = c · (1 + ε̃k) for
all k divisible by u. We also let

c+ = d(ξ)−1/a · c
a(u−1)β−1 · Γ

(
(u− 1)β

)
so that

CS,ξ,1 = c+

M

∑
0≤k<M
u|k

e
(
kσξ
M

)
(1 + ε̃k).

Add to S the finitely many primes p ∈ P \S for which λ0(p) is nonzero, extending ξ by setting ξ(p) =
λ0(p). Since λ0 satisfies condition (IV) of Definition 2.23, we have σξ =

∑
v∈S ξ(v) =

∑
v∈S λ0(v) = 0

in Z/MZ. Then,
c+

M

∑
0≤k<M
u|k

e
(
kσξ
M

)
= c+

M
· M
u
· 1 = c+

u
.

We now have:

∣∣∣∣∣CS,ξ,1 − c+

u

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
c+

M

∑
0≤k<M
u|k

e
(
kσξ
M

)
ε̃k

∣∣∣∣∣∣∣∣∣ ≤
c+

M

∑
0≤k<M
u|k

∣∣∣∣e(kσξM
)
ε̃k

∣∣∣∣ ≤ c+

M
· M
u
· ε = ε · c

+

u
.

Since ε was chosen strictly smaller than 1, it follows that CS,ξ,1 is nonzero. This concludes the proof
of Theorem 2.16 (i).

2.7. Restriction to division algebras

All notations are as in Subsection 2.4. Recall that elements of ΛS,ξ,τ correspond to extensions whose
local invariants are all divisible by τ . Let Λ′

S,ξ = Λ′ ∩ ΛS,ξ,1 be the set of maps corresponding to
central simple Z-algebras of dimension M2 in which K embeds, whose local invariants at places v ∈ S
are given by ξ(S)

M , and which are division algebras. Note that (cf. condition (V) in Definition 2.23):

Λ′
S,ξ = ΛS,ξ,1 \

⋃
τ |M
τ>1

ΛS,ξ,τ .
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By the Möbius inversion formula, we get:∣∣∣{λ ∈ Λ′
S,ξ

∣∣∣ d(λ) ≤ X
}∣∣∣ =

∑
τ |M

µ(τ) |{λ ∈ ΛS,ξ,τ | d(λ) ≤ X}| .

By Corollary 2.34, this implies:∣∣∣{λ ∈ Λ′
S,ξ

∣∣∣ d(λ) ≤ X
}∣∣∣ = C ′

S,ξX
1/a log(X)(u−1)β−1 + o

(
X1/a log(X)(u−1)β−1

)
where

C ′
S,ξ :=

∑
τ |M

µ(τ)CS,ξ,τ .

All that is left is to show that C ′
S,ξ is positive when an extension exists. We assume that Λ′

S,ξ is
not empty, and we fix an element λ0 ∈ Λ′

S,ξ (see Theorem 2.37 to see what this hypothesis means in
terms of S and ξ). Extend S by adding to it the finitely many primes p of Z not in S at which λ0(p)
is nonzero, and set ξ(p) = λ0(p) at these primes. Since λ0 ∈ Λ′, we now have gcdv∈S ξ(v) = 1.
Therefore, all central simple algebras associated to maps agreeing with ξ on S are division algebras.
This ensures that for all divisors τ of M besides 1, we have CS,ξ,τ = 0, and thus C ′

S,ξ = CS,ξ,1.
Combined with Subsection 2.6, this implies the positivity of C ′

S,ξ (and this holds for the original
“non-extended” S and ξ by a straightforward variant of Lemma 2.36).

We have now proved Theorem 2.16 (ii), completing the proof of Theorem 2.16.

2.8. Counting by product of ramified primes

We now explain how to adapt the proof of Theorem 2.16 in order to show Theorem 2.20. If L/K
is an inner Galois extension of K with center Z corresponding to an element λ ∈ Λ, then the
product ram(L) of the primes of Z ramified in L equals the following quantity ram(λ), computed in
terms of the map λ alone:

ram(λ) :=
∏

p prime of Z
λ(p)̸=0

||p||.

Now, consider the following Dirichlet series:

f∗
S,ξ,τ (s) =

∑
λ∈ΛS,ξ,τ

ram(λ)−s.

Like in Subsection 2.4, we rewrite the Dirichlet series as:

f∗
S,ξ,τ (s) = ram(ξ)−s ∑

(as in Eq. (2.2))

∏
p∈P\S
λ(p)̸=0

||p||−s

= ram(ξ)−s

M

M−1∑
k=0

e
(
kσξ
M

) ∏
p∈P\S

f∗
τ,k,p(s).

where we have defined:

f∗
τ,k,p(s) := 1 +

∑
0̸=λ∈Z/MZ

ητ,p|λ

e
(
kλ

M

)
||p||−s.

The Euler factor f∗
τ,k,p(s) also equals 1 + ψ∗

τ,k(Frob(p))||p||−s, where the class function ψ∗
τ,k : G → Z

is defined as follows:

ψ∗
τ,k(g) :=

gcd
(
j · cycgcd(g), Mτ

)
− 1 if gcd

(
j · cycgcd(g), Mτ

)
divides k

−1 otherwise.
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The average of ψ∗
τ,k is largest for τ = 1, k = 0, where it equals:

avg
(
ψ∗

1,0(g)
)

= j

 1
|G|

∑
g∈G

cycgcd(g)

− 1 = b∗.

The rest of the proof of Theorem 2.20 goes through exactly as in Subsections 2.5 to 2.7. In the
argument, one uses the fact that b∗ > 0 (shown in Remark 2.21) in order to see that fS,ξ,τ (s) has a
pole of positive order.

2.9. Criteria for existence of an extension

By Theorem 2.24, the existence of an inner Galois extension L/K of degree n = dj2 with center
Z(L) = Z is equivalent to the existence of a map λ : P → Z/MZ in Λ, and the existence of such an
extension which is a division algebra amounts to the existence of a map λ ∈ Λ′. The following lemma
shows (when S is taken to be the empty set) that these conditions can be checked by considering
only the finite set Pex of exceptional primes, and the finitely many maps Pex → Z/MZ:

Theorem 2.37. Let S be a finite set of places of Z and ξ be a map S → Z/MZ satisfying conditions
(I)–(III) of Definition 2.23. The existence of an inner Galois extension L/K of degree n = dj2 with
center Z(L) = Z and whose local invariants at places v ∈ S are given by ξ(v)

M is equivalent to the
existence of a map λ : Pex → Z/MZ coinciding with ξ on S ∩ Pex, satisfying conditions (I)–(III) of
Definition 2.23, and such that the following condition holds:

(IV’) dm
U |

∑
v∈Pex λ(v).

The existence of an extension as above which is also a division algebra is equivalent to the existence
of a map λ : Pex → Z/MZ as above which moreover satisfies:

(V’) gcd
(
dm
U , gcdv∈Pex λ(v)

)
= 1.

Proof.

(⇒) We first assume that there is an inner Galois extension L/K as above. By Theorem 2.24, it
corresponds to a map λ : P → Z/MZ in Λ, coinciding with ξ on S. Its restriction to Pex

clearly still satisfies (I)–(III) at places v ∈ Pex, and coincides with ξ on S ∩ Pex.
Let v ∈ P \ Pex. By definition of U , dm

U = dm
lcmg∈G cycgcd(g) divides dm

cycgcd(Frob(v)) , which in turn
divides λ(v) by Lemma 2.25. Hence, dm

U divides
∑
p∈P\Pex λ(v).

By condition (IV) of Definition 2.23, we have
∑
v∈P λ(v) = 0. It follows that dm

U |
∑
v∈Pex λ(v),

so the restriction of λ to Pex satisfies (IV’).
If L is a division algebra, then λ ∈ Λ′, so by condition (V) of Definition 2.23, we have
gcdv∈P λ(v) = 1. Since dm

U | λ(v) for v ∈ P \ Pex, it follows that gcd
(
dm
U , gcdv∈Pex λ(v)

)
= 1,

so the restriction of λ to Pex satisfies (V’).

(⇐) Conversely, assume that we have a map λ : Pex → Z/MZ as above, satisfying (I)–(III) and
(IV’) and coinciding with ξ on S ∩Pex. We explain how to extend it to a map λ : P → Z/MZ
satisfying (IV) and coinciding with ξ on S. First, by Čebotarev’s density theorem, the equality
dm
U = gcdg∈G

dm
cycgcd(g) implies:

dm

U
= gcd

p̸∈S∪Pex

dm

cycgcd(Frob(p)) . (2.12)

By hypothesis, dm
U divides

∑
v∈Pex λ(v). Moreover, dm

U divides ξ(v) for every v ∈ S \ Pex

because ξ satisfies (III). Extend λ to a map S ∪ Pex → Z/MZ by putting λ(v) = ξ(v) if
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v ∈ S \Pex. Then, dmU divides
∑
v∈S∪Pex λ(v). By Equation (2.12) and Bézout’s identity, there

is a finite set S1 of primes p /∈ S ∪ Pex and integers λ̃(p) for each p ∈ S1, such that λ̃(p) is
divisible by dm

cycgcd(Frob(p)) and such that:∑
v∈S∪Pex

λ(v) +
∑
v∈S1

λ̃(v) = 0. (2.13)

Extend λ to P by letting λ(p) = λ̃(p) if p ∈ S1, and λ(v) = 0 for places v /∈ (S ∪ Pex) ⊔ S1.
We have extended λ into a map λ : P → Z/MZ coinciding with ξ on S; by Lemma 2.25 and
Equation (2.13), this map satisfies conditions (I)–(IV) and hence lies in Λ. This gives us an
inner Galois extension L/K as needed.
Now assume also that the original map λ : Pex → Z/MZ satisfies (V’). It follows from Equa-
tion (2.12) that there is a finite set S2 of places p /∈ S∪Pex such that dm

U = gcdp∈S2
dm

cycgcd(Frob(p)) .
Add these places to S and extend ξ by letting ξ(p) = dm

cycgcd(Frob(p)) if p ∈ S2. Now, use the
procedure from the previous paragraph to extend λ to a map P → Z/MZ coinciding with ξ
on S and satisfying (I)–(IV). Then gcdv∈P λ(v) divides gcd

(
gcdv∈Pex λ(v), gcdv∈S2 λ(v)

)
=

gcd
(
gcdv∈Pex λ(v), dm

cycgcd(Frob(p))
)

= gcd
(
gcdv∈Pex λ(v), dmU

)
, which is 1 by hypothesis (V’).

This shows that the map λ : P → Z/MZ satisfies (V). By Theorem 2.24, the corresponding
extension L/K is therefore a division algebra as required.

Remark 2.38. There are indeed situations where a map λ like in Theorem 2.37 does not exist, even
when S is empty. For instance, assume that F/Z is a nontrivial Galois extension and that m does
not divide j. Let v be a prime of Z completely split in F , so that condition (III) rewrites as “for
all places w|v of F , λ(v) = djκw mod dm”. It is then possible to construct the central simple F -
algebra K of dimension m2 so that the values of κw for different primes w above v force λ(v) to take
contradictory values modulo dm. For example, choose κw to be 0 for some place w|v, and 1 for some
other place w|v. Then, λ(v) must be congruent to both 0 and dj modulo dm, which is impossible
as m does not divide j.

Note also the following corollary:

Corollary 2.39. If there is an inner Galois extension of K of degree n with center Z which is a
division algebra, then m and j are coprime.

Proof. By Theorem 2.37, the hypothesis implies the existence of a map λ : Pex → Z/MZ satisfy-
ing conditions (I)–(III) of Definition 2.23 as well as condition (V’). The integer d gcd(m, j) divides
both dm and dj. Since λ satisfies condition (III) of Definition 2.23, this implies that d gcd(m, j)
divides dwλ(v) for all places w of F lying above a place v ∈ Pex. Summing over all places w above a
fixed place v ∈ Pex, we get d gcd(m, j) | dλ(v), i.e., gcd(m, j) | λ(v). This holds for all places v ∈ Pex,
and thus gcd(m, j) divides gcdv∈Pex λ(v). On the other hand, gcd(m, j) | m | dmU . Hence, gcd(m, j)
divides gcd

(
dm
U , gcdv∈Pex λ(v)

)
, which equals 1 by condition (V’). We conclude that gcd(m, j) = 1

as claimed.

3. Outer extensions

In this section, we study the distribution of outer extensions L of a given (finite-dimensional) simple
Q-algebra K. We also discuss more specific questions, considering the case of outer Galois extensions
with a given finite Galois group or restricting our attention to division algebras. In all cases, our
main results relate these problems to questions concerning the distribution of ordinary commutative
field extensions. Those questions are open in most cases.

In Subsection 3.1, we prove general facts concerning outer extensions, notably Theorem 3.3
which states that every outer extension of K is the tensor product of K with a field extension of its
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center Z(K). In Subsection 3.2, we give criteria for such a tensor product to be a division algebra
and express d(L/K) in terms of the relative discriminant of the field extension Z(L)/Z(K). Finally,
in Subsection 3.3, we use these descriptions to relate the problem of counting outer extensions of K
with that of counting field extensions of Z(K).

3.1. General facts about outer extensions

3.1.1. Groups of inner automorphisms are either trivial or infinite. We first prove Propo-
sition 3.1 and Corollary 3.2, which imply that every extension whose automorphism group is finite is
an outer extension, assuming that its center is infinite. For division algebras, this is well-known (see
[Des18, Théorème]). Proposition 3.1 is also used in our proof of the characterization Theorem 3.3.

Proposition 3.1. Let A be a finite-dimensional algebra over an infinite field F . If the group A×/F×

is finite, then A = F .

Proof. Write A× = a1F
× ⊔ · · · ⊔ arF×. Then, A is covered by the subsets A \A× and a1F, . . . , arF .

Each of these is an algebraic subset of the F -vector space A: The set A\A× is defined by the equation
NmA/F (x) = 0, which is polynomial in the coordinates of x, and the sets a1F, . . . , arF are linear
subspaces. If A ̸= F , then the F -vector space A is at least two-dimensional, so A \A×, a1F, . . . , arF
are properly contained in A. However, it is well-known that a finite-dimensional vector space over an
infinite field cannot be covered by finitely many algebraic proper subsets. (See [Coh03, p. 228].)

Corollary 3.2. Let L/K be an extension of simple algebras. Assume that the inner automorphism
group of L/K is finite and that the field Z(L) is infinite. Then, L/K is an outer extension.

Proof. By Proposition 3.1, the finiteness of Inn(L/K) ≃ CentL(K)×/Z(L)× implies that CentL(K) =
Z(L) and thus Inn(L/K) = 1. Therefore, the extension L/K is outer.

(The assumption that Z(L) be infinite is crucial, as the example L = Md(Fq), K = Fq shows.)

3.1.2. The Deschamps-Legrand descent theorem. We state and prove a generalized version
of a theorem of Deschamps and Legrand [DL20, Corollaire 2], which is an “outer equivalent” of
Corollary 2.7. The original result does not deal with the non-Galois case, and only treats the case
of division algebras. This theorem gives a concrete description of extensions of K, allowing to
parametrize them in terms of field extensions of Z(K) (see Corollary 3.4).

Theorem 3.3. Let L/K be an extension of simple Q-algebras. The following are equivalent:

(i) L/K is outer;

(ii) CentL(K) = Z(L);

(iii) Z(K) is contained in Z(L), and L is generated by K and Z(L);

(iv) Z(K) is contained in Z(L), and L is isomorphic to the tensor product Z(L) ⊗Z(K) K as an
extension of K;

(v) Z(K) is contained in Z(L), and the restriction map Aut(L/K)→ Aut(Z(L)/Z(K)) is bijective.

Proof.

(i) ⇒ (ii) Since L/K is outer, the group Inn(L/K) ≃ CentL(K)×/Z(L)× is trivial and thus CentL(K)× =
Z(L)×. Now, Proposition 3.1 directly implies that CentL(K) = Z(L).
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(ii) ⇒ (iii) We have Z(K) = K ∩ CentL(K) (ii)= K ∩ Z(L), so Z(K) is contained in Z(L). Let L∆ be the
subalgebra of L generated jointly by Z(L) and K. We have:

L∆ = CentL
(
CentL

(
L∆)) by [Stacks, Theorem 074T (3)]

= CentL
(
CentL

(
Z(L)

)
∩ CentL(K)

)
because L∆ is generated by Z(L) and K

= CentL
(
L ∩ CentL(K)

)
= CentL(Z(L)) by (ii)
= L.

Therefore, L is generated jointly by Z(L) and K.

(iii) ⇒ (iv) By (iii), the algebras Z(L) and K generate L, and thus the tensor product Z(L) ⊗Z(K) K
surjects onto L via x ⊗ y 7→ xy. Since L ̸= 1 and the algebra Z(L) ⊗Z(K) K is simple by
[Stacks, Lemma 074F], this surjection is an isomorphism. Therefore, L ≃ Z(L) ⊗Z(K) K as
claimed.

(iv) ⇒ (v) The restriction map is well-defined because automorphisms of L preserve the center. By functo-

riality of the tensor product, we obtain a map Aut(Z(L)/Z(K))→ Aut(Z(L)⊗Z(K) K/K)
(iv)
≃

Aut(L/K). That map is an inverse of the restriction map, proving its bijectivity.

(v) ⇒ (i) By (v), automorphisms of L/K are determined by their restriction to Z(L). However, inner
automorphisms of L act trivially on Z(L). Therefore, the extension L/K has no nontrivial
inner automorphisms and thus is outer.

We rephrase Theorem 3.3 to emphasize its importance for parametrizing outer extensions of K:

Corollary 3.4. Let F be a number field and let K be a central simple F -algebra.
There is a bijective correspondence:

{outer extensions L/K} / ∼= ∼←→ {field extensions F ′/F} / ∼=
given by:

L 7→ Z(L)
F ′ ⊗F K 7→ F ′

Moreover, via this correspondence:
[L : K] = [F ′ : F ]

Aut(L/K) ≃ Aut(F ′/F )
L/K is Galois ⇔ F ′/F is Galois.

Proof. Everything follows directly from Theorem 3.3 apart from the last equivalence. By Theorem 3.3
[(i) ⇒ (iv), (v)], we have:

LAut(L/K) = (Z(L)⊗Z(K) K)Aut(Z(L)/Z(K))

where Aut(Z(L)/Z(K)) only acts on the factor Z(L), so that:

LAut(L/K) = Z(L)Aut(Z(L)/Z(K)) ⊗Z(K) K. (3.1)

Thus, LAut(L/K) = K is equivalent to Z(L)Aut(Z(L)/Z(K)) = Z(K).

Remark 3.5. Corollary 3.4 implies a “noncommutative Hilbert 90 theorem” like in [Des23, Proposi-
tion 26.2]. Indeed, consider an outer Galois extension L/K of simple algebras. Combining Corol-
lary 3.4 with the result of [Ser62, Chap. X, §10, Exercise 2], we obtain:

H1
(
Gal(L/K), L×

)
= H1

(
Gal

(
Z(L)/Z(K)

)
,
(
K ⊗Z(K) Z(L)

)×) = 1.
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3.2. Computing relative discriminants of outer extensions

Let F be a number field and K be a central division F -algebra of dimension m2. If v is a place of F ,
let κv be the element of Z/mZ such that the local invariant of K at v is given by κv

m . We denote
by S the finite set of places v of F for which κv ̸= 0.

In this section, we take a closer look at tensor products of K with field extensions F ′/F , which
by Corollary 3.4 are all the outer extensions of K. The main result is Theorem 3.6, which relates the
“generalized relative discriminant” d(L/K) when L = K⊗F F ′ to the relative discriminant d(F ′/F ),
and characterizes situations where L is a division algebra.

Let d ∈ N. We introduce the set Ed of tuples (E(v))v∈S where E(v) is an étale Fv-algebra of
dimension d for all v ∈ S. This set Ed is finite.3 To each field extension F ′/F of degree d corresponds
a tuple (F ′ ⊗F Fv)v∈S ∈ Ed. For E ∈ Ed, we define:

δ(E) :=
∏
p∈S

prime of F

||p||δp(E) (3.2)

where

δp(E) := md(m− gcd(m, κp))−m
∑

field E′
factor of E(p)

f(E′/Fv)(m− gcd(m, [E′ : Fv]κp)). (3.3)

We also define the following subset of Ed:

E ′
d :=

{
(E(v))v∈S ∈ Ed

∣∣∣∣∣ the elements
(
[E′ : Fv]κv

)
v∈S
E′ factor of E(v)

generate Z/mZ
}
.

Theorem 3.6. Let F ′/F be a field extension of degree d and let L/K be an outer extension, associated
to each other via the bijection of Corollary 3.4 (i.e., F ′ = Z(L) and L = F ′ ⊗F K). Let E =
(F ′ ⊗F Fv)v∈S ∈ Ed. Then:

(i) The number d(L/K) introduced in Definition 1.3 satisfies d(L/K) = δ(E)−1 · d(F ′/F )m2;

(ii) L is a division algebra if and only if E ∈ E ′
d.

Proof. By [Rei03, (31.9)], the local invariant of L at a place w of F ′, lying above a place v of F , is
given by:

inv(Lw) = inv
(
(K ⊗F F ′)w

)
= [F ′

w : Fv] · inv(Kv) = [F ′
w : Fv]κv
m

. (3.4)

(i) We have:

d(L/F ′) =
∏

p prime of F

∏
q|p prime of F ′

||q||
m

(
m−gcd(m, [F ′

q :Fp]κp)
)

by Equations (1.2) and (3.4)

=
∏

p prime of F

∏
q|p prime of F ′

||p||
mf(q|p)

(
m−gcd(m, [F ′

q :Fp]κp)
)

=
∏
p∈S

prime of F

||p||
m
∑

q|p f(q|p)
(
m−gcd(m, [F ′

q :Fp]κp)
)

3Here, complications arise if the base field is a function field over a finite field instead of a number field, as its
completions may have infinitely many extensions of a given degree and thus the naive analogue of Ed is not always
finite. Then, when taking cardinalities in Equation (3.5), the sum on the right is not finite.
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=
∏
p∈S

prime of F

||p||
md

(
m−gcd(m,κp)

)
−δp(E)

by Equation (3.3)

= d(K/F )d · δ(E)−1. by Equations (1.2) and (3.2)

Finally, using Proposition 1.4:

d(L/K) = d(L/F ′) · d(F ′/F )m2

d(K/F )d = δ(E)−1 · d(F ′/F )m2
.

(ii) By definition, L is a division algebra if and only if its index is m. Since index and exponent
coincide for central simple algebras over number fields, this is equivalent to the condition that
the invariants inv(Lw) = [F ′

w:Fv ]κv

m have least common denominator m, which amounts to the
numerators [F ′

w : Fv]κv generating Z/mZ. The places v /∈ S, with κv = 0, do not contribute.
For v ∈ S, the fields F ′

w with w | v are exactly the factors E′ of E(v) = F ′ ⊗F Fv. Thus, L is
a division algebra if and only if E ∈ E ′

d.

Remark 3.7. The number δ(E) is the m-th power of an integer and divides d(K/F )d. Indeed, for all
primes p ∈ S, we have:

δp(E) = m
∑

field E′
factor of E(p)

f(E′/Fv)
[
e(E′/Fv)(m− gcd(m, κp))− (m− gcd(m, [E′ : Fv]κp))

]
≥ m

∑
field E′

factor of E(p)

f(E′/Fv)
[
e(E′/Fv)(m− gcd(m, κp))− (m− gcd(m, κp))

]
= m

∑
field E′

factor of E(p)

f(E′/Fv)(e(E′/Fv)− 1)(m− gcd(m, κp))

≥ 0

and thus δ(E) is an integer. Since the integers δp(E) are multiples of m, δ(E) is an m-th power.
Finally, δp(E) ≤ md(m− gcd(m,κp)) so δ(E) divides d(K/F )d (compare with Equation (1.2)).
Remark 3.8. Assume that K is a division algebra and that d is coprime to m. Then, Ed = E ′

d (i.e.,
K ⊗F F ′ is a division algebra for all field extensions F ′/F of degree d). Indeed, consider an element
E ∈ Ed. For each place v ∈ S, gcdE′ factor of E(v)[E′ : Fv] divides

∑
E′ factor of E(v)[E′ : Fv] = [E(v) :

Fv] = d. Since d and m are coprime, this implies gcdv∈S gcdE′ factor of E(v)[E′ : Fv]κv = gcdv∈S κv,
which equals 1 because K is a division algebra unramified outside S. We have shown E ∈ E ′

d.

3.3. Counting outer extensions.

All notations are as in Subsection 3.2. By Theorem 3.6, the bijection of Corollary 3.4 restricts to a
bijection: 

isomorphism classes of
outer extensions L/K
such that d(L/K) ≤ X

 ∼←→
⊔
E∈Ed


isomorphism classes of
field extensions F ′/F

such that d(F ′/F ) ≤ (δ(E)X)1/m2

and F ′ ⊗F Fv ≃ E(v) for all v ∈ S

 . (3.5)

This bijection can be restricted to outer extensions which are division algebras by considering only
tuples E ∈ E ′

d on the right-hand side. We can therefore relate the counting function for outer
extensions of K to a finite sum of counting functions for field extensions of F with fixed local
behaviors above S.

For example, the results of [Woo10, Sections 2.4 and 2.5] on Malle’s conjecture for abelian groups
imply:
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Corollary 3.9. Let G be a finite abelian group. Let u be the smallest prime divisor of |G| and let r
be the number of elements of order u in G.

(i) There is a real number C > 0 such that the number N(X) of isomorphism classes of Galois
extensions L/K with Galois group isomorphic to G (necessarily outer by Corollary 3.2) and
d(L/K) ≤ X satisfies

N(X) ∼
X→∞

CX1/a(logX)b−1

where a = m2 |G|
(
1− 1

u

)
and b = r

[F (ζu):F ] .

(ii) Assuming that K is a division algebra, the same holds if we restrict to extensions L/K which
are division algebras (with a possibly smaller constant C).

Similarly, [BSW15, Theorem 3] implies:

Corollary 3.10. Let n ∈ {2, 3, 4, 5}.

(i) There is a real number C > 0 such that the number N(X) of isomorphism classes of outer
extensions L/K of degree n with d(L/K) ≤ X satisfies

N(X) ∼
X→∞

CX1/m2
.

(ii) Assuming that K is a division algebra, the same holds if we restrict to extensions L/K which
are division algebras (with a possibly smaller constant C).

4. General extensions

In this section, we briefly discuss the possibility of combining the methods of Section 3 with the
methods of Section 2 in order to parametrize or count general extensions which are neither inner
nor outer. We focus exclusively on extensions L/K which are division algebras. The main result
is Theorem 4.2, which explains how to uniquely decompose such an extension L/K into an outer
extension F ′ ⊗F K/K and an inner Galois extension L/F ′ ⊗F K. This decomposition can be used
“backwards” to parametrize extensions L/K. Moreover, we relate the outer automorphism group
of L/K and the Galois group of F ′/F .

In the proof of Theorem 4.2, we make use of Lemma 4.1 below, which lets one extend automor-
phisms of a field into automorphisms of simple central algebras over that field. A proof is given in
[Han06, Proposition 5.8], where the result is attributed to Deuring.

Lemma 4.1. Let Z be a number field and let L be a central simple Z-algebra. Then, an automorphism
σ ∈ Aut(Z) extends into an automorphism σ̃ ∈ Aut(L) if and only if inv(Lv) = inv

(
Lσ(v)

)
for every

place v of L. We say that an automorphism of Z preserves L if it satisfies that property.

Finally, we state and prove Theorem 4.2:

Theorem 4.2. Let K be a division Q-algebra with center F .

(i) We have a bijection between the set of isomorphism classes of extensions L/K that are division
algebras and the set of equivalence classes of triples (F ′, Z, L), where:

• F ′/F is a finite field extension,
• Z is a subfield of F ′ satisfying F ′ = Z · F ,
• L is an extension with center Z of the central simple F ′-algebra F ′ ⊗F K such that L is

a division algebra. By Lemma 2.3, such an extension in inner Galois.
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Here, two triples (F ′
1, Z1, L1) and (F ′

2, Z2, L2) are considered equivalent if there is an F -algebra
isomorphism f : F ′

1 → F ′
2 with f(Z1) = Z2 and a ring isomorphism g : L1 → L2 such that

g(x⊗ y) = f(x)⊗ y for all x ∈ F ′
1 and y ∈ K.

Moreover, if an extension L/K corresponds to a triple (F ′, Z, L) via this bijection, then:

(ii) The outer automorphism group Out(L/K) := Aut(L/K)/Inn(L/K) of L/K is isomorphic to
the group of automorphisms of F ′/F sending Z to Z and whose restriction to Z preserves L.

(iii) The extension L/K is Galois if and only if the field extension F ′/F is Galois and every auto-
morphism of F ′/F restricts to a well-defined automorphism of Z preserving L.

L

F ′ ⊗F K

K

F ′ = Z · F

Z F

Proof. Any triple (F ′, Z, L) as above naturally gives rise to an extension L/K which is a division
algebra, as L is an extension of F ′ ⊗F K and hence of K. Equivalent triples by definition give rise
to isomorphic extensions of K.

Conversely, consider any extension L/K that is a division algebra. To construct the triple
(F ′, Z, L), we first let Z := Z(L), and we let F ′ := Z · F be the smallest subring of L contain-
ing Z and F . As a commutative finite-dimensional Q-algebra without zero divisors, F ′ is a field.
Since elements of F ′ commute with those of K, we have a Z-algebra homomorphism F ′ ⊗F K → L
sending f⊗k to fk, which is injective since F ′⊗F K is a simple ring by [Stacks, Lemma 074F]. Using
this embedding, we can interpret L as an extension of F ′ ⊗F K. This concludes the construction of
(F ′, Z, L).

Consider any isomorphism g : L1 → L2 between extensions of K which are division algebras. It
restricts to an isomorphism Z(L1)→ Z(L2) and fixes F ⊆ K. Hence, it restricts to an isomorphism
f : Z(L1) · F → Z(L2) · F with f(Z(L1)) = Z(L2). Moreover, g(xy) = f(x)y for all x ∈ Z(L1) · F
and y ∈ K. This implies that isomorphic extensions give rise to equivalent tuples, completing the
proof of (i). We leave it to the reader to verify that the maps are inverse to each other.

Let (F ′, Z, L) be a triple as above. Reasoning as in the previous paragraph, we see that we have
a group homomorphism:

φ : Aut(L/K) −→
{
σ ∈ Aut(F ′/F )

∣∣∣σ(Z) = Z
}
.

Any element of the kernel of φ is an automorphism of L/Z and hence an inner automorphism by
the Skolem–Noether theorem. Conversely, any inner automorphism of L/K fixes all elements of
Z = Z(L) and of F ⊆ K and hence fixes all elements of F ′. Therefore, the group homomorphism φ
has kernel Inn(L/K) and thus induces an injective homomorphism:

φ̃ : Out(L/K) ↪→
{
σ ∈ Aut(F ′/F )

∣∣∣σ(Z) = Z
}
.
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Finally, Lemma 4.1 lets us describe the image of that map, proving (ii):

Out(L/K) ≃ H :=
{
σ ∈ Aut(F ′/F )

∣∣∣∣∣ σ(Z) = Z
σ|Z preserves L

}
.

It remains to prove (iii). We have seen that the restrictions to F ′ of automorphisms of L/K
are exactly the elements of H ⊆ Aut(F ′/F ). If F ′/F is not a Galois extension or if H is a proper
subgroup of Aut(F ′/F ), then F ′H ⊋ F . But then LAut(L/K) ⊇ (F ′⊗F K)Aut(L/K) = F ′H ⊗F K ⊋ K,
so L/K is not Galois.

Conversely, if F ′/F is Galois extension and every automorphism of F ′/F belongs to H, then
F ′H = F ′Gal(F ′/F ) = F . Hence, (F ′ ⊗F K)Aut(L/K) = F ′H ⊗F K = F ⊗F K = K. According
to Lemma 2.3, the extension L/F ′ ⊗F K is Galois, so in particular LAut(L/K) ⊆ LAut(L/F ′⊗FK) =
F ′ ⊗F K. Together, we conclude that LAut(L/K) = K, so L/K is Galois.

Remark 4.3. Without the assumption that L is a division algebra, the compositum F ′ = Z ·F might
not be a field. For example, let L = M2(Q(i)) and let K ⊆ L be the Q-algebra generated by the
rotation matrix M =

( 0 1
−1 0

)
, whose minimal polynomial is X2 + 1. Note that K is a commutative

algebra, abstractly isomorphic to Q[X]/(X2+1) ≃ Q(i). We have Z = Z(L) = Q(i) and F = Z(K) =
K. The compositum F ′ = Z · F = Q(i)[M ] is then isomorphic to Q(i)[X]/(X2 + 1) = Q(i) × Q(i)
which is not a field.
Remark 4.4. In the proof of Theorem 4.2, we constructed an embedding of F ′ ⊗F K into L. Since
F ′ = Z ·F , the image A of this embedding is the compositum Z ·K. In particular, Z ·K ∼= F ′⊗F K
is a simple Z-algebra. By [Stacks, Theorem 074T], we have Z ·K = CentL(CentL(Z ·K)). Moreover,
CentL(Z · K) = CentL(K). Thus, the image A can also be constructed as the double centralizer
CentL(CentL(K)), and the field F ′ as the center of A ≃ F ′ ⊗F K.

In principle, Theorem 4.2 suggests an approach for enumerating or counting extensions L/K:
parametrize number fields F ′/F (say, with fixed Galois group G), subfields Z of F ′, and then inner
Galois extensions L/F ′ ⊗F K. An enumeration of inner Galois extensions L/F ′ ⊗F K is obtained
by adapting the methods of Section 2 to account for the condition that certain local invariants must
coincide (see Lemma 4.1 and points (ii), (iii) of Theorem 4.2). The question of the enumeration
of number fields F ′/F is essentially Malle’s conjecture [Mal02, Mal04]. However, even in situations
where Malle’s conjecture has a known answer (for example the case G = Z/2Z where F ′/F is a
quadratic extension), one is left with nontrivial analytic problems (uniformity estimates in constant
factors and error terms) that require future research.
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