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Abstract. We study the asymptotic distribution of wildly ramified extensions of function
fields in characteristic p > 2, focusing on (certain) p-groups of nilpotency class at most 2.
Rather than the discriminant, we count extensions according to an invariant describing the last
jump in the ramification filtration at each place. We prove a local–global principle relating the
distribution of extensions over global function fields to their distribution over local fields, leading
to an asymptotic formula for the number of extensions with a given global last-jump invariant.
A key ingredient is Abrashkin’s nilpotent Artin—Schreier theory, which lets us parametrize
extensions and obtain bounds on the ramification of local extensions by estimating the number
of solutions to certain polynomial equations over finite fields.
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1. Introduction

For the whole article, we fix a prime number p. If F is a field, we denote by ΓF := Gal(F sep|F )
its absolute Galois group.

1.1. Context. The asymptotic distribution of field extensions (usually counted by discrim-
inant) is an actively studied topic. Over a number field F , the case of abelian extensions
was solved in [Wri89] using the description of Gal(F ab|F ) given by class field theory, and
the case of extensions of degree ≤ 5 was solved in [DH69, Bha05, Bha10, BSW15] using ex-
plicit parametrizations. Significant progress has also been made for nilpotent extensions in
[KM04, KP23]. Although the general problem remains wide open, precise conjectures predict
the expected distribution of class groups and Galois groups [CL84, Mal02]. Over function
fields, similar conjectures have been made when considering only tamely ramified extensions.
Results consistent with these expectations were obtained recently in [EVW16, ETW23, LL25]
by counting Fq-points of moduli spaces of tamely ramified covers of the line (Hurwitz spaces).

Meanwhile, the distribution of wildly ramified extensions of function fields of characteristic p
(both local and global) is much more mysterious, and there is not even a conjecture (see however
the “main speculation” of [DY25]). For abelian p-extensions, asymptotics have been described
in [Lag12, Lag15, KM20, Pot24, Gun24]. For non-abelian p-extensions, very little is known: only
the local distribution of extensions whose Galois group is a certain generalization of Heisenberg
groups (different from the generalized Heisenberg groups which we consider in Section 6) has
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been described in [Mü22]. Constructions of moduli spaces for wildly ramified covers of curves, as
in the articles [Har80, BM00, FM02, Pri02, Zha19, TY23, DH24], highlight how different these
spaces are from usual Hurwitz spaces, making it unlikely that the strategy of [ETW23, LL25]
can be straightforwardly adapted.

The goal of this article is to study the distribution of extensions of function fields of charac-
teristic p > 2 for the p-groups arising as central extensions of abelian groups (i.e., p-groups of
nilpotency class ≤ 2).

1.2. The last jump. In this paper, we do not count using the discriminant, but we use an
invariant obtained by describing the last jump in the ramification filtration at each place, in the
upper numbering. Let G be a finite group (seen as a discrete topological group). If F is a local
field and K is an (étale) G-extension of F, corresponding to a continuous group homomorphism
γ : ΓF ! G (see Subsection 2.1), we define an invariant lastjump(K|F) as follows:

lastjump(K|F) := inf
{
v ∈ R≥0

∣∣ γ(Γv
F

)
= 1
}
,

where Γv
F denotes the v-th ramification subgroup of the absolute Galois group of F, in the upper

numbering (see [Ser62, Chap. IV, §3]). When the choice of the local field F is implied by the
context, we define lastjump(K) := lastjump(K|F).

Now, let K be an (étale) G-extension of a global field F . At each place P of F , we define
lastjumpP (K) := lastjump(K ⊗F FP | FP ), where FP is the completion of F at P . These local
invariants are then assembled into the following global invariant, mimicking the way invariants
like the discriminant (or rather its degree) behave:

lastjump(K) :=
∑
P

deg(P ) · lastjumpP (K). (1.1)

In its principle, this invariant is more closely related to the “product of the ramified primes”
(used for example in [Woo10]) than to the discriminant, but it adds weights to the primes
depending on how wild the ramification at each prime is. Note however that our invariant does
not distinguish unramified primes from tamely ramified primes.

When G is a p-group and F has characteristic p, tame ramification is impossible, so that
lastjump(K) (resp. lastjumpP (K)) vanishes if and only if K is an unramified extension (resp. P
is unramified in F ).

The invariants lastjumpP (K) and lastjump(K) are rational numbers whose denominators
divide |G|. When G is an abelian group, the last jump is always an integer by the Hasse–Arf
theorem, and it coincides with the exponent of the “Artin–Schreier conductor”, an invariant
for which asymptotics were given in [Gun24]. As discussed there, counting by Artin–Schreier
conductor gives simpler, more uniform results than counting by discriminant.

1.3. Main results. Assume now that p > 2, and let G be a non-trivial finite p-group of
nilpotency class at most 2, i.e., such that [G,G] ⊆ Z(G). As we explain in Lemma 2.14, the
p-torsion elements of G form a group, which we denote by G[p]. Let F := Fq(T ) be a rational

(global) function field of characteristic p, and let ÉtExt(G,F ) be the set of isomorphism classes
of (étale) G-extensions of F (see Subsection 2.1). Our first main result is the following exact
local–global principle:

Theorem 1.1 (cf. Theorem 5.2). For every place P of F = Fq(T ), let NP ∈ Q≥0. Assume that
NP = 0 for all but finitely many places. Then,∑

K∈ÉtExt(G,F ):
∀P, lastjumpP (K)=NP

1

|Aut(K)|
=

∏
P

∑
KP∈ÉtExt(G,FP ):
lastjump(KP )=NP

1

|Aut(KP )|
.

This local–global principle allows us to determine the asymptotics of G-extensions of Fq(T )
using estimates for the number of extensions of the local fields Fqd((T )) for d ≥ 1. The following
global asymptotics are the main results of this article.
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Theorem 1.2 (cf. Theorem 5.6). Let

r := logp |G[p]| and M :=

{
1 if G[p] is abelian,

1 + p−1 otherwise.

If G[p] is non-abelian, assume that |G[p]| ≤ pp−1. Assume moreover that q is a large enough
power of p (depending on the group G). Then, there is a function C : Q/MZ ! R≥0 with
C(0) ̸= 0, such that for rational N !∞, we have∑

K∈ÉtExt(G,F ):
lastjump(K)=N

1

|Aut(K)|
= C(N mod M) · q

r+1
M

·N + o
(
q

r+1
M

·N
)
.

The hypothesis that q is large is needed due to a technical limitation of our local counting
methods. An explicit lower bound on q can be deduced from the proof of Theorem 5.6, but we
presume that the conclusion may hold for all q. We show that the conclusion indeed holds for
all q if G has exponent p, or more generally if G satisfies the hypothesis of Proposition 4.15.

For concrete groups G, it can be possible to overcome the restriction that |G[p]| ≤ pp−1. As
an illustration, we carry out the necessary computations for generalized Heisenberg groups:

Theorem 1.3 (cf. Theorem 6.7). Let k ≥ 1, and let G := Hk(Fp) be the generalized Heisenberg
group defined in Equation (6.4). There are explicit constants A ∈ Q>0, B ∈ N>0,M ∈ Q>0

(cf. Subsection 6.6) and a function C : Q/MZ ! R≥0 with C(0) ̸= 0, such that for rational
N !∞, we have∑

K∈ÉtExt(G,F ):
lastjump(K)=N

1

|Aut(K)|
= C(N mod M) · qANNB−1 + o

(
qANNB−1

)
.

Moreover, if p ≥ 5, then B = 1 (cf. Proposition 6.8).

Remark 1.4. In principle, asymptotics for the number of field extensions (excluding non-simple
étale algebras) could be obtained by inclusion–exclusion over subgroups of G. Note also the
following criterion for surjectivity, which follows from [MKS04, Lemma 5.9]: when G is a nilpo-
tent group, a homomorphism ΓF ! G is surjective if and only if the induced homomorphism
Γab
F ! Gab is surjective. (This fact was also used in [KP23].)

1.4. Strategy and outline of the paper. We now summarize the content of each section.
This outline also serves as an explanation of our general strategy.

A key tool in our proofs is Abrashkin’s nilpotent Artin–Schreier theory from [Abr98] (simpler
forms of this theory for p-groups of exponent p and for p-groups of nilpotency class ≤ 2, were
respectively introduced in [Abr95a] and in [Abr95b]). Section 2 is essentially a reformulation
of this theory. We review a general principle for the parametrization of extensions (Propo-
sition 2.4), and we explain how to apply this principle using Witt vectors and Lie algebras
(Corollary 2.13, Theorem 2.19).

In Section 3, we assume that the base field is a local function field of characteristic p.
We refine the parametrization by describing an approximate fundamental domain, making the
parametrization finite-to-one (Theorem 3.6), and we use Abrashkin’s description of the ramifi-
cation filtration from [Abr98] to characterize extensions with a given last jump (Definition 3.9,
Theorem 3.20).

In Section 4, we analyze the equations obtained in the previous section in order to obtain
bounds on the number of their solutions, and hence on the number of local extensions with
bounded last jump (Theorem 4.2). Locally, the bounds we obtain are rough: we have precise
estimates of the number of extensions for small values of the last jump, but only upper bounds
for large values.

In Section 5, we assume that the base field is a rational global function field of characteristic p.
We prove an exact local–global principle for the last jump (Theorem 5.2, which is Theorem 1.1),
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as well as a general analytic lemma allowing one to deduce global asymptotics from local esti-
mates (Lemma 5.4). These two tools, combined with the results of the previous section, let us
prove our main counting theorem (Theorem 5.6, which is Theorem 1.2) in Subsection 5.3.

Handling the case where the p-torsion subgroup G[p] is non-abelian of size ≥ pp requires a
more careful analysis of the equations. In Section 6, we consider the infinite family of (non-
abelian) Heisenberg groups Hk(Fp) (of exponent p), for which the hypotheses of Theorem 1.2
need not be satisfied, and we obtain global asymptotics for the number of Hk(Fp)-extensions
of Fq(T ) (see Theorem 6.7, which is Theorem 1.3). This example illustrates what is needed to
solve the problem for more general p-groups of exponent p: a key step is to estimate the number
of elements commuting with their Frobenius in a certain Lie algebra.

1.5. Possible improvements. Refinements could come from better understanding the ge-
ometry of the varieties defined by the equations of Definition 3.9 (cf. Remark 4.10) in order
to improve our bounds on their number of Fq-points (for example, using the Grothendieck–
Lefschetz trace formula as in [ETW23] and [SV21]). Another interesting question, which could
be related to the geometric point of view on the problem, is whether the generating functions
associated to our counting problems are rational functions, as such a phenomenon was observed
in [Gun24] for abelian p-extensions.

Although we consider only groups of nilpotency class ≤ 2, Abrashkin’s theory applies in
principle to all p-groups of nilpotency class < p. However, practical difficulties arise when using
it for counting purposes due to the complexity of the description of the ramification filtration.
The equivalent formulations given by Abrashkin in [Abr23] (in terms of the canonical connection
on φ-modules from [Fon90, 2.2.4]) and in [Abr24] might be better suited for counting. Moreover,
we have no reason to think that our exact local–global principle (Theorem 5.2) holds for groups
of higher nilpotency class.

It should be noted that parametrizing extensions is not the major difficulty (see Subsec-
tion 2.2). For instance, GLn(Fp)-extensions are parametrized by étale φ-modules of dimen-
sion n, and over local function fields the explicit (“group-theoretic”) description of the absolute
Galois group given in [Koc67] (without its ramification filtration!) offers in theory easy access
to all extensions. The main challenge lies in obtaining a sufficiently good description of the ram-
ification filtration of these extensions (e.g., an expression for the discriminant/last jump/. . . in
terms of the parametrization) to make counting possible. In that regard, the results of [Ima24]
are interesting, as they give an example where the ramification filtration is described even when
the nilpotency class equals p, extending slightly beyond the scope of Abrashkin’s theory. For
groups of nilpotency class 2, the case p = 2 is also mentioned in [Abr10], whereas we do not say
anything about the case p = 2 in this article.

It is natural to ask whether other invariants satisfy the exact local–global principle from
Theorem 1.1. For the discriminant, we doubt this — at least, our method of proof does not
apply. Nevertheless, it might be feasible to prove an approximate local–global principle sufficient
for a statement analogous to Theorem 1.2.

In our main results, the base field is always a rational (global) function field Fq(T ), with
trivial class group. For non-rational base fields F ̸= Fq(T ), the exact local–global principle
can famously fail even when only considering unramified abelian extensions. This failure can
be quantified for abelian p-groups G using Selmer groups (see [Lag12, Lag15, Pot24]) and it
seems plausible that the same methods can be used to generalize our main counting results
(Theorems 1.2 and 1.3) to non-rational base fields.

1.6. Terminology and notation. If X is a set, we denote its cardinality by |X|. When x is
an element of a set X on which a group acts, we denote by [x] the orbit of x, usually without
specifying which group is acting when the context makes it clear.

Throughout the article, σ always denotes the absolute Frobenius endomorphism x 7! xp of a
commutative ring R of characteristic p, and we also call σ the endomorphism induced by σ for
every object constructed functorially from R.
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In this article, Galois cohomology sets H i(ΓF , G) are defined using continuous group coho-
mology (absolute Galois groups are equipped with the profinite topology, and G is a topological
group on which ΓF acts continuously). These cohomology sets are themselves groups if G is
abelian. If G is non-abelian, they are defined only if i ∈ {0, 1}, and are pointed sets with no
natural group structure (cf. [Ser62, Chap. VII, Annexe]).

Many notations are introduced in the text. These notations, together with references to their
definition and with a short description, are listed in an appendix (p. 40).

1.7. Acknowledgments. This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) — Project-ID 491392403 — TRR 358 (project A4). The
authors are grateful to Xujia Chen, Kiran Kedlaya, Jürgen Klüners and Nicolas Potthast for
helpful discussions, and moreover to Victor Abrashkin, Jordan Ellenberg, Carlo Pagano, and
Takehiko Yasuda for their comments on an earlier draft.

2. Preliminaries

In this section, we review known results concerning the following topics:
• the parametrization of extensions in characteristic p (Subsections 2.1 and 2.2);
• perfect closures of rings in characteristic p (Subsection 2.3);
• Witt vectors and their Galois cohomology (Subsection 2.4);
• the Lazard correspondence, which relates each finite p-group G of nilpotency class < p to
a finite Lie Zp-algebra (Subsection 2.5);

• the approach developed by Abrashkin under the name nilpotent Artin–Schreier theory,
which parametrizes G-extensions in characteristic p (Subsection 2.6).

Our explanations loosely follow those given by Abrashkin in [Abr98, §1], but with some differ-
ences (cf. Remark 2.20). The theory presented in Subsection 2.6 takes a simpler form whenG is a
p-group of exponent p, as perfect closures and Witt vectors are not required. See Subsection 6.1
for a brief overview of the simplified theory.

2.1. Extensions and cohomology classes. Let G be a finite group and F be a field. By a G-
extension of F , we mean an étale F -algebra K together with an action of G such that there is a
G-equivariant F sep-algebra isomorphism between K⊗F F sep and the ring of maps f : G! F sep

on which G acts via (g.f)(h) = f(hg). An isomorphism between two G-extensions of F is
a G-equivariant isomorphism between the corresponding étale F -algebras. We denote the set
of isomorphism classes of G-extensions of F by ÉtExt(G,F ), often confusing an isomorphism

class in ÉtExt(G,F ) with one of its representatives K, and denoting by Aut(K) the group
of its G-equivariant F -algebra automorphisms. We recall the well-known relationship between
ÉtExt(G,F ) and the set H1(ΓF , G) of G-conjugacy classes of continuous group homomorphisms
γ ∈ Hom(ΓF , G), seeing G as a discrete topological group equipped with the trivial ΓF -action:

Lemma 2.1. There is a bijection

ÉtExt(G,F )
∼
 ! H1(ΓF , G)

such that, if K ∈ ÉtExt(G,F ) corresponds to [γ] ∈ H1(ΓF , G), then:

(a) For the action of G on Hom(ΓF , G) by conjugation, we have Aut(K) ≃ StabG(γ).
(b) K is a field if and only if γ : ΓF ! G is surjective.
(c) K is the trivial G-extension of F (the ring of maps G! F ) if and only if γ = 1.

Definition 2.2 (Twisting). Let N be a subgroup of the center of G. The twist of γ ∈
Hom(ΓF , G) by δ ∈ Hom(ΓF , N) is the point-wise product γ · δ ∈ Hom(ΓF , G).

Remark 2.3. Denoting the projection G ↠ G/N by π, the twisting operation lets us define a
bijection for any given γ ∈ Hom(ΓF , G):

Hom(ΓF , N)
∼
−! {γ′ ∈ Hom(ΓF , G) | π ◦ γ′ = π ◦ γ},

δ 7−! γ · δ.
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Said differently, twisting defines a free action of the abelian group Hom(ΓF , N) on the set
Hom(ΓF , G), and each orbit [γ] is determined by the (well-defined) element π◦γ ∈ Hom(ΓF , G/N).

2.2. Parametrization of extensions. We fix a field F . In this subsection, we describe a
general principle for parametrizing elements of H1(ΓF , G).

Let GF sep be a topological group equipped with a continuous action of ΓF and with a ΓF -
equivariant group homomorphism σ : GF sep ! GF sep . We denote by G the subgroup of GF sep

consisting of fixed points of σ, and by GF the closed subgroup of GF sep consisting of ΓF -invariant
elements. Note that, as the actions of σ and ΓF commute, we have σ(GF ) ⊆ GF . We define a
left action of GF sep on itself via the formula:

g.m := σ(g)mg−1.

This action restricts to an action of GF on itself, whose set of orbits we denote by GF//GF
. The

multiplicative Artin–Schreier map is the map ℘ : GF sep ! GF sep defined by

℘(g) := σ(g)g−1 = g.1.

Note that ℘(g) = 1 if and only if g ∈ G. If GF sep is abelian, then g.m = ℘(g)m for all
g,m ∈ GF sep , so that the set of orbits GF//GF

is the quotient group GF /℘(GF ).

Proposition 2.4. Assume that the following properties hold:

(i) G ⊆ GF ;
(ii) GF ⊆ ℘(GF sep);
(iii) The map of pointed sets H1(ΓF , G)! H1(ΓF , GF sep) is trivial.

Then, there is a bijection

orb: H1(ΓF , G)
∼
−! GF//GF

[τ 7! g−1τ(g)] 7−! [℘(g)] for any g ∈ ℘−1(GF ).

Moreover, if orb([γ]) = [m], then StabG(γ) = StabGF
(m).

Proof. As in [BG14, Proposition 1], there is a bijection between the kernel of the map of
pointed sets H1(ΓF , StabGF sep (1)) ! H1(ΓF , GF sep) and the set (GF ∩ ℘(GF sep))//GF

of GF -
orbits of elements of GF ∩℘(GF sep). For the action of GF sep on itself, the stabilizer of 1 is G by
definition, (i) implies that ΓF does act trivially on G, (ii) implies that the orbit ℘(GF sep) of 1
contains GF (so that (GF ∩ ℘(GF sep))//GF

= GF//GF
), and (iii) implies that ker(H1(ΓF , G) !

H1(ΓF , GF sep)) = H1(ΓF , G). We have the desired bijection, and its definition matches the one
given here. The equality between stabilizers is easily verified. □

Assume that F has characteristic p. We illustrate the principle with fundamental examples:

Example 2.5. Let G be an algebraic group over Fp and G = G(Fp). Then, the group G(F sep),
equipped with its natural ΓF -action and absolute Frobenius endomorphism σ, is a good can-
didate to apply Proposition 2.4, as it always satisfies condition (i), and moreover GF = G(F ).
However, conditions (ii) and (iii) still need to be verified.

Example 2.6 (Artin–Schreier theory). Consider the group GF sep = F sep (the case G = Ga of
Example 2.5). The subgroup of ΓF -invariant elements is GF = F . The subgroup of elements
fixed by the Frobenius homomorphism σ(x) = xp is G = Fp. The map ℘ : F sep ! F sep,
x 7! xp − x is surjective, and we have H1(ΓF , F

sep) = 0 by [Ser62, Chap. X, § 1, Prop. 1].

Hence, Proposition 2.4 yields the well-known bijection H1(ΓF ,Z/pZ)
∼
! F/℘(F ).

Example 2.7. Let G = GLn(Fp) and GF sep = GLn(F
sep) (the case G = GLn of Example 2.5).

The subgroup of ΓF -invariant elements is GLn(F ). In this case, H1(ΓF , GF sep) vanishes by a
generalization of Hilbert’s Theorem 90 (cf. [Ser62, Chap. X, §1, Prop. 3]), and the map ℘ is
surjective on F sep-points as it comes from an étale morphism (GLn)Fp ! (GLn)Fp . We retrieve
the theory of étale φ-modules of dimension n (cf. [FO22, Subsection 3.2], and notably their
Remark 3.24). In particular, the case n = 1 gives a special case of Kummer theory for the
parametrization of Z/(p− 1)Z-extensions (the case G = Gm of Example 2.5).



COUNTING TWO-STEP NILPOTENT WILDLY RAMIFIED EXTENSIONS OF FUNCTION FIELDS 7

2.3. Perfect closure. Let R be an integral domain of characteristic p, so that its Frobenius
endomorphism σ : R ! R, x 7! xp is injective. We define the perfect closure Rperf of R as the
following direct limit:

Rperf := lim−!(R
σ
! R

σ
! R! . . .).

In other words, any element of Rperf is a formal pn-th root of an element of R for some n ≥ 0.
Since σ : R ! R is injective, the canonical map R ! Rperf is an injection, and we regard R as
a subring of Rperf via this map. The absolute Frobenius endomorphism σ of Rperf extends the
Frobenius of R and is an automorphism, so that Rperf is a perfect ring containing R. Moreover,
that construction is functorial in R.

Let now F be a field of characteristic p, and let F sep be a separable closure of F . The field
F alg := (F sep)perf is an algebraic closure of F , and it is also a separable closure of F perf. When
we refer to the absolute Galois group ΓFperf , we mean Gal(F alg|F perf). A key property of the
perfect closure is that its separable extensions correspond bijectively to those of F :

Lemma 2.8. The restriction map ΓFperf ! ΓF is an isomorphism of topological groups.

Proof. The preimage of an automorphism τ of F sep|F is the automorphism of F alg|F perf send-

ing pn
√
x to pn

√
τ(x) for all x ∈ F and all n ≥ 0. We leave it to the reader to check that this

inverse map is continuous. □

We let ΓF act on F alg = (F perf)sep via the isomorphism ΓF ≃ ΓFperf .
For any finite group G, composition with the restriction map ΓF ! ΓFperf induces a bijection

between the pointed sets H1(ΓFperf , G) and H1(ΓF , G), which by Lemma 2.1 means that there

is a bijection ÉtExt(G,F perf) ≃ ÉtExt(G,F ).
We denote by ℘ the Fp-linear endomorphism x 7! σ(x) − x. For G = Z/pZ, the bijection

ÉtExt(Z/pZ, F perf) ≃ ÉtExt(Z/pZ, F ) turns into a bijection F perf/℘(F perf) ≃ F/℘(F ) using
Artin–Schreier theory. This can also be observed directly:

Lemma 2.9. The map F/℘(F ) ! F perf/℘(F perf) induced by the inclusion F ⊆ F perf is an
isomorphism.

Proof. The injectivity amounts to the inclusion F ∩℘(F perf) ⊆ ℘(F ). Let x ∈ F . The equation
yp − y = x is a separable equation in the variable y with coefficients in F . Since the extension
F perf|F is purely inseparable, any solution y in F perf has to lie in F . Therefore, if x ∈ ℘(F perf),
then x ∈ ℘(F ).

We now check surjectivity. Let x ∈ F perf. By definition of F perf, there is some n ≥ 0 such
that σn(x) ∈ F . By definition of ℘, we have z ≡ σ(z) mod ℘(F perf) for all z ∈ F perf, and in
particular x ≡ σ(x) ≡ . . . ≡ σn(x). □

2.4. Witt vectors. To deal with p-groups of exponent larger than p, we use p-typical Witt
vectors. We have a functor

W : {rings of characteristic p} −! {Zp-algebras}
mapping a ring R to the corresponding ring of Witt vectors W (R), whose elements can be
represented as vectors of infinite length with coordinates in R. Let R be an integral domain
of characteristic p. The operation consisting of adding a leading zero to a Witt vector, shift-
ing all other coordinates one place to the right, defines the (Zp-linear) Verschiebung operator
Ver : W (R)!W (R). Moreover, the absolute Frobenius endomorphism σ : x 7! xp of R induces
a coordinatewise ring endomorphism σ of W (R), fixing exactly the elements of W (Fp) = Zp.
We denote by ℘ the Zp-linear map W (R) ! W (R), x 7! σ(x) − x, whose kernel is Zp. The
endomorphism of R given by multiplication by p coincides with Ver ◦ σ = σ ◦ Ver. The ring of
Witt vectors of length n over R is the Z/pnZ-algebra

Wn(R) := W (R)/Vern(W (R)),

which coincides with W (R)/pnW (R) when R is perfect. We have W (R) = lim −n
Wn(R).

We now fix a field F of characteristic p. The action of ΓF on F alg = (F sep)perf induces a
coordinatewise action on W (F alg), fixing exactly the elements of W (F perf).
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Remark 2.10 (Artin–Schreier–Witt theory). The additive group GF sep := Wn(F
sep) satisfies the

hypotheses of Proposition 2.4 with GF = Wn(F ) and G = Wn(Fp) = Z/pnZ. Hence, we have

a bijection H1(ΓF ,Z/pnZ)
∼
! Wn(F )/℘(Wn(F )). (See for example [Bos18, Lemmas 9 and 10,

and Proposition 11 in Section 4.10].)

Remark 2.11. The ring W (F perf) is a torsion-free Zp-module, hence flat, so any short exact

sequence of Zp-modules 0! n! g! g/n! 0 induces an exact sequence of W (F perf)-modules

0! n⊗Zp W (F perf)! g⊗Zp W (F perf)! (g/n)⊗Zp W (F perf)! 0.

Lemma 2.12. The following properties hold for any finite Zp-module g:

(i) The Artin–Schreier map ℘ : g⊗W (F alg)! g⊗W (F alg), g 7! σ(g)− g, is surjective.
(ii) The natural map g⊗W (F perf)! g⊗W (F alg) is injective.
(iii) (g⊗W (F alg))ΓF = g⊗W (F perf).
(iv) (g⊗W (F alg))σ = g.
(v) H1(ΓF , g⊗W (F alg)) = 0.

Proof. We can assume without loss of generality that g = Z/pnZ with n ≥ 1, as every finite Zp-

module is a direct sum of such factors. We have g⊗W (F perf) = Wn(F
perf) and g⊗W (F alg) =

Wn(F
alg). Then:

(i) Apply [Bos18, Lemma 9 in Section 4.10] to K = F perf (recall that F alg = (F perf)sep).
(ii) Clear.
(iii) Clear (the action of ΓF ≃ ΓFperf on Wn(F

alg) is coordinatewise).
(iv) Clear (the action of σ on Wn(F

alg) is coordinatewise, and Wn(Fp) = Z/pnZ).
(v) This follows from [Bos18, Proposition 11 in Section 4.10], applied to K = F perf. □

Lemma 2.12 lets us apply Proposition 2.4 to obtain the following parametrization of G-
extensions of F , where G is any finite abelian p-group (corresponding to (g,+) for a finite
Zp-module g):

Corollary 2.13. Let g be a finite Zp-module, and let ℘ : g⊗W (F perf)! g⊗W (F perf) be the
(additive) Artin–Schreier map g 7! σ(g)− g. We have a bijection:

H1(ΓF , (g,+))
∼
−! g⊗W (F perf)/℘(g⊗W (F perf)).

The goal of the following subsections is to obtain a non-abelian version of Corollary 2.13 —
this will be Theorem 2.19.

2.5. Lie Zp-algebras.

2.5.1. Definitions. A Lie Zp-algebra is a Zp-module g equipped with a (Zp-bilinear, alternating)
Lie bracket [−,−] : g2 ! g satisfying the Jacobi identity [[a, b], c]+[[b, c], a]+[[c, a], b] = 0. Let g
be a Lie Zp-algebra. We say that g is abelian if its Lie bracket is identically zero. An ideal of g
is a submodule n ⊆ g such that [g, n] ⊆ n. We can form the quotient of g by an ideal n to obtain
a Lie algebra g/n. The center of g is the ideal Z(g) formed of elements x such that [g, x] = 0.
For elements x1, . . . , xn ∈ g, we use the notation

[x1, . . . , xn] := [[· · · [[︸ ︷︷ ︸
n−1

x1, x2], x3], . . . , xn].

We say that g is nilpotent if there is an integer n such that [x1, . . . , xn+1] vanishes for all
x1, . . . , xn+1 ∈ g. The smallest such n is then the nilpotency class of g. For instance, the zero
Lie algebra is the unique Lie algebra of class 0, and the Lie algebras of class 1 are exactly the
non-zero abelian Lie algebras. The center of a non-zero nilpotent Lie algebra g is a non-zero
abelian Lie algebra. In particular, if g ̸= 0 is finite and nilpotent, then there is a Lie subalgebra
n ⊆ Z(g) with n ≃ Z/pZ.

Lie algebras of nilpotency class ≤ 2 are those for which the Lie bracket is valued in the
center, i.e., such that [g, g] ⊆ Z(g). If g is a Zp-module and z is a given submodule of g, then
equipping g with a Lie bracket such that g has nilpotency class ≤ 2 and center z amounts to
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giving a non-degenerate alternating Zp-bilinear map (g/z) ⊕ (g/z) ! z (the Jacobi identity is
automatically satisfied).

2.5.2. The Lazard correspondence (cf. [Laz54]). Let g be a Lie Zp-algebra of nilpotency class
< p. We define a group law ◦ on g via the truncated Baker–Campbell–Hausdorff formula:

x ◦ y := x+ y +
1

2
[x, y] +

1

12
[x, y, y]− 1

12
[x, y, x] + . . .

where the sum is including only the finitely many terms of the Baker–Campbell–Hausdorff
formula (see e.g. [Ser06, p. 29]) which do not feature p-fold commutators, thus involving only
denominators coprime to p and making the sum well-defined. For instance, for Lie algebras
of nilpotency class ≤ 2 (with p > 2), the formula simplifies to x ◦ y = x + y + 1

2 [x, y]. The
operation transforming the Lie algebra g into the group (g, ◦) is the key construction in the
Lazard correspondence, which is an equivalence of categories:

{finite Lie Zp-algebras of nilpotency class < p} ! {finite p-groups of nilpotency class < p}.
In particular, every finite p-group G of nilpotency class < p is isomorphic to (g, ◦) for some finite
Lie Zp-algebra g, which then has the same nilpotency class. This correspondence was introduced
by Lazard in [Laz54] (see also [CdGVL12] or [Abr98, Section 1.2]), and it is somewhat analogous
to the classical Lie correspondence between Lie algebras and Lie groups.

Via this correspondence, Lie subalgebras of g correspond to subgroups of (g, ◦). Similarly,
ideals of g correspond to normal subgroups of (g, ◦), and the quotients then correspond to each
other: a short exact sequence 0 ! n ! g ! g/n ! 0 of Lie algebras (i.e., a short exact
sequence of Zp-modules in which every arrow is a Lie algebra homomorphism) induces a short
exact sequence 1! (n, ◦)! (g, ◦)! (g/n, ◦)! 1 of groups.

As the Lie bracket of an element x ∈ g with itself vanishes, the n-th power of x as an element
of the group (g, ◦) is n · x, for all n ∈ Z. In particular, the inverse of x with respect to ◦ is
simply its additive inverse −x.

If [x, y] = 0, then x ◦ y = y ◦ x = x + y. Conversely, if x and y commute in (g, ◦), then the
Campbell identity

x ◦ y ◦ (−x) =

p−1∑
n=0

(−1)n

n!
[y, x, . . . , x︸ ︷︷ ︸

n

]

implies that [x, y] is an n-fold commutator for any n ≥ 2 (by induction on n) and hence [x, y] = 0
as g is nilpotent. In particular, the center Z(g) of the Lie algebra g coincides with the center of
the group (g, ◦). Note that the Lie algebra g is abelian if and only if the group (g, ◦) is abelian,
in which case the laws + and ◦ coincide.

If g is a Zp-module, the set g[p] of its p-torsion elements forms an Fp-vector space. When g
is a Lie Zp-algebra, the Lie Fp-algebra g[p] is an ideal of g: indeed, if x ∈ g[p], then p · [x, y] =
[p · x, y] = 0 for any y ∈ g. Using the Lazard correspondence, this directly implies:

Lemma 2.14. Let G be a finite p-group of nilpotency class smaller than p. Its p-torsion
elements form a normal subgroup of G, which we denote by G[p].

Remark 2.15. The condition on the nilpotency class is crucial in Lemma 2.14: for example, the
2-torsion elements of the 2-group D4 (of nilpotency class 2) do not form a subgroup of D4.

2.6. Nilpotent Artin–Schreier theory. We fix a finite Lie Zp-algebra g of nilpotency class
smaller than p, and we let G := (g, ◦). (By Paragraph 2.5.2, every finite p-group G of nilpotency
class < p arises in this way.) The tensor product g ⊗Zp W (F alg) inherits a Lie Zp-algebra

structure from g (and hence a group law ◦) by W (F alg)-linear extension. In this subsection, we
apply Proposition 2.4 to the group GF sep := (g⊗W (F alg), ◦) in order to prove Theorem 2.19.

The actions of ΓF and of σ on g ⊗W (F alg) respect the group law ◦, so they are actions on
the group GF sep , and they commute with each other. By Lemma 2.12 (points (iii) and (iv)),
the subgroup of GF sep fixed by ΓF is GF := (g ⊗ W (F perf), ◦) and the subgroup fixed by σ
is G = (g, ◦). Following Subsection 2.2, we then define a left action of the group GF sep on
the set g ⊗ W (F alg) by g.m := σ(g) ◦ m ◦ (−g). This action restricts to an action of the
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subgroup GF = (g ⊗ W (F perf), ◦) on the set g ⊗ W (F perf). We write g ⊗ W (F perf)//W (Fperf)

for the set of (g⊗W (F perf), ◦)-orbits of g⊗W (F perf). The multiplicative Artin–Schreier map
℘ : g⊗W (F alg)! g⊗W (F alg) is given by g 7! σ(g) ◦ (−g), so that ℘(g) = g.0.

We first prove the following lemma, which is used in proofs by induction on the size of g:

Lemma 2.16. Let g,m ∈ g ⊗W (F alg) and h, n ∈ Z(g) ⊗W (F alg). Then, (g + h).(m + n) =
g.m+ h.n.

Proof.

(g + h).(m+ n) = σ(g + h) ◦ (m+ n) ◦ (−g − h)

= σ(g) ◦ σ(h) ◦m ◦ n ◦ (−g) ◦ (−h) as h, n ∈ Z(g)⊗W (F alg)

= σ(g) ◦m ◦ (−g) ◦ σ(h) ◦ n ◦ (−h) as σ(h), n ∈ Z(g)⊗W (F alg)

= (g.m) ◦ (h.n)

= g.m+ h.n as h.n ∈ Z(g)⊗W (F alg). □

In particular, applied to m = n = 0, Lemma 2.16 implies:

Corollary 2.17. Let g ∈ g⊗W (F alg) and h ∈ Z(g)⊗W (F alg). Then, ℘(g+h) = ℘(g)+℘(h).

We now verify the remaining hypotheses of Proposition 2.4:

Lemma 2.18. The group (g⊗W (F alg), ◦) satisfies the following properties:

(i) We have (g⊗W (F alg))σ ⊆ (g⊗W (F alg))ΓF .
(ii) The multiplicative Artin–Schreier map ℘ : g⊗W (F alg)! g⊗W (F alg) is surjective.
(iii) The cohomology set H1(ΓF , (g⊗W (F alg), ◦)) is a singleton.

Proof. Point (i) directly follows from Lemma 2.12 (points (iii) and (iv)), so we focus on points (ii)
and (iii).

When g is an abelian Lie Zp-algebra, the group law ◦ coincides with +, so we have already
proved the claims in Lemma 2.12 (points (i) and (v)).

We now prove the result for a general Lie Zp-algebra g of nilpotency class < p, by induction
on the size of g. The case g = 0 is clear, so assume that g is non-zero and that the result holds
for Lie Zp-algebras of nilpotency class < p whose size is smaller than |g|. Pick a subalgebra
n ⊆ Z(g) isomorphic to Z/pZ. We have already shown the claims for the abelian Lie algebra n,
and the claims hold for the Lie algebra g/n by the induction hypothesis. To combine these two
known cases, we use the exact sequence of Lie Zp-algebras

0! n! g! g/n! 0,

which induces an exact sequence of Lie Zp-algebras (see Remark 2.11)

0! n⊗W (F alg)! g⊗W (F alg)! (g/n)⊗W (F alg)! 0,

and thus an exact sequence of groups (see Paragraph 2.5.2)

1! (n⊗W (F alg), ◦)! (g⊗W (F alg), ◦)! ((g/n)⊗W (F alg), ◦)! 1.

We then prove points (ii) and (iii):

(ii) Let x ∈ g ⊗W (F alg), and let x̄ ∈ (g/n) ⊗W (F alg) be its projection. By the induction
hypothesis, there is some ȳ ∈ (g/n)⊗W (F alg) such that ℘(ȳ) = x̄. Choose an arbitrary
lift y ∈ g⊗W (F alg) of ȳ. Then, x−℘(y) belongs to n⊗W (F alg). By the case g = Z/pZ,
there is a z ∈ n ⊗W (F alg) such that ℘(z) = x − ℘(y). As z is central, Corollary 2.17
implies that ℘(y + z) = ℘(y) + ℘(z) = x. Thus, ℘ is surjective.

(iii) We have the following exact sequence of pointed sets in non-abelian Galois cohomology:

H1(ΓF , (n⊗W (F alg), ◦)) −! H1(ΓF , (g⊗W (F alg), ◦)) −! H1(ΓF , ((g/n)⊗W (F alg), ◦))
In this sequence, we already know that the cohomology sets associated to n and to g/n
are trivial. Hence, so is the cohomology set H1(ΓF , (g⊗W (F alg), ◦)) associated to g. □
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Lemmas 2.12 and 2.18 let us apply Proposition 2.4 to parametrize G-extensions of F where
G = (g, ◦), generalizing Corollary 2.13 to (some) non-abelian p-extensions:

Theorem 2.19. There is a bijection

orb: H1(ΓF , G)
∼
−! g⊗W (F perf)//W (Fperf)

[τ 7! (−g) ◦ τ(g)] 7−! [℘(g)] for any g ∈ ℘−1(g⊗W (F perf)).

Moreover, if orb([γ]) = [m], then StabG(γ) ≃ Stab(g⊗W (Fperf),◦)(m).

Remark 2.20. In [Abr98], Abrashkin instead constructed a closely related bijection

H1(ΓF , G)
∼
−! g⊗O(F )//O(F ),

where O(F ) ⊆ W (F ) is the Cohen ring of F , i.e., the p-adically complete flat local Zp-algebra
with maximal ideal p and residue field F (unique up to isomorphism). We refer to [FO22,
Subsection 1.2.4] or [BM90, Subsection 1.1] for more details about Cohen rings. The main
advantage of Cohen rings over Witt vectors is the fact that Z/pZ⊗O(F ) = O(F )/pO(F ) = F ,
whereas Z/pZ ⊗ W (F perf) = F perf is slightly larger. (However, this disadvantage disappears
modulo the image of the Artin–Schreier map, see Lemma 2.9.) On the other hand, the main
advantage of Witt vectors over Cohen rings is functoriality: any field homomorphism F1 ↪! F2

induces a canonical ring homomorphism W (F perf
1 ) ↪!W (F perf

2 ), but not necessarily a canonical
ring homomorphism O(F1)! O(F2). Functoriality is a convenient property for us to apply to
the actions of ΓF and σ on F sep and to embeddings of global fields into their completions.

Proposition 2.21 (Naturality). The bijection of Theorem 2.19 is natural in both g and F :

(a) Let f : g1 ! g2 be a morphism of finite Lie Zp-algebras of nilpotency class smaller
than p. We obtain a commutative diagram:

H1(ΓF , (g1, ◦)) g1 ⊗W (F perf)//W (Fperf)

H1(ΓF , (g2, ◦)) g2 ⊗W (F perf)//W (Fperf)

orb
∼

orb
∼

where the vertical maps are the natural maps induced by f .
(b) Let f : F1 ↪! F2 be a field homomorphism between fields of characteristic p. We obtain

a commutative diagram:

H1(ΓF1 , (g, ◦)) g⊗W (F perf
1 )//

W (Fperf
1 )

H1(ΓF2 , (g, ◦)) g⊗W (F perf
2 )//

W (Fperf
2 )

orb
∼

orb
∼

where the vertical maps are the natural maps induced by f .

Remark 2.22. Let [m] ∈ g⊗W (F perf)//W (Fperf) correspond to a G-extension K|F via the bijec-
tions of Theorem 2.19 and Lemma 2.1. Then, Proposition 2.21 implies the following:

(a) For any ideal n of g, the orbit [m mod n] ∈ (g/n) ⊗ W (F perf)//W (Fperf) corresponds to

the (g/n, ◦)-subextension of K fixed by (n, ◦).
(b) For any valuation v of F , denoting by Fv the completion of F with respect to v, the

orbit [m] ∈ g⊗W (F perf
v )//

W (Fperf
v )

corresponds to the G-extension K ⊗F Fv of Fv.

By Theorem 2.19 and Lemma 2.1, elements of g ⊗W (F perf)//W (Fperf) correspond bijectively
to G-extensions of F . Thus, we extend the definition of the last jump:

Definition 2.23. Assume that F is either a local or a global function field of characteristic p.
If K|F is the G-extension associated to an orbit [m] ∈ g ⊗ W (F perf)//W (Fperf), we define both

lastjump(m) and lastjump([m]) to be lastjump(K|F ) (cf. Subsection 1.2).
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Finally, we describe the effect of the “twisting operation” of Definition 2.2 in terms of the
parametrization:

Lemma 2.24 (Twisting). Let n be a Lie subalgebra of Z(g). For any γ ∈ Hom(ΓF , (g, ◦)) and
δ ∈ Hom(ΓF , (n, ◦)), let m ∈ g⊗W (F perf) and n ∈ n⊗W (F perf) be such that:

orb([γ]) = [m] ∈ g⊗W (F perf)//W (Fperf) and orb([δ]) = [n] ∈ n⊗W (F perf)//W (Fperf).

Then, orb([γ · δ]) = [m+ n] ∈ g⊗W (F perf)//W (Fperf).

Proof. Pick g ∈ g ⊗ W (F alg) and h ∈ n ⊗ W (F alg) such that m = ℘(g) and n = ℘(h), and
such that γ(τ) = (−g) ◦ τ(g) and δ(τ) = (−h) ◦ τ(h) for all τ ∈ ΓF . For all τ ∈ ΓF , we have
(γ · δ)(τ) = γ(τ) ◦ δ(τ) = (−g) ◦ τ(g) ◦ (−h) ◦ τ(h) = (−g−h) ◦ τ(g+h) as h ∈ Z(g)⊗W (F alg).
Moreover, by Corollary 2.17, we have ℘(g+h) = ℘(g)+℘(h) = m+n. Hence, orb([γ·δ]) = [m+n]
by definition. □

3. Local parametrization

In this section, we fix a finite field κ of characteristic p > 2, a local function field F with
residue field κ, and a uniformizer π of F, so that F = κ((π)). We denote by π̃ the Teichmüller
representative (π, 0, 0, . . .) ∈ W (F) ⊆ W (Fperf) of π. We also fix a finite Lie Zp-algebra g ̸= 0 of
nilpotency class at most 2, and we denote by G := (g, ◦) its associated p-group.

Our goal is to study G-extensions of the local field F. We refine the parametrization of these
extensions by describing “approximate fundamental domains” (Subsections 3.1 and 3.3), and we
use Abrashkin’s results from [Abr98] to describe the last jump in terms of this parametrization
(Subsections 3.2 and 3.4). This will allow us to count extensions in Section 4.

The main results of this section can be summed up as follows: we define W (κ)-modules
D0,D ⊆ W (Fperf) and a surjection pr : D0 ↠ D [cf. Definitions 3.2 and 3.14] such that:

• The action of (g⊗W (Fperf), ◦) on g⊗W (Fperf) restricts to an action of the finite group
(g ⊗ W (κ), ◦) on g ⊗ D0. We denote by g ⊗ D0//W (κ) the set of orbits for the restricted
action. [cf. Remark 3.5]

• The inclusion D0 ⊆ W (Fperf) induces a bijection g ⊗ D0//W (κ)
∼
! g ⊗ W (Fperf)//W (Fperf)

(the latter is itself in bijection with ÉtExt(G,F) by Theorem 2.19). [cf. Theorem 3.6]
• The last jump of an element D ∈ g⊗D0 ⊆ g⊗W (Fperf) (in the sense of Definition 2.23)
is characterized in terms of its “coordinates” Da ∈ g⊗W (κ) by the equations of Defini-
tion 3.9. [cf. Theorem 3.20]

• There is an action of (g⊗W (κ), ◦) on g⊗D such that the surjection pr induces a surjection
pr : g⊗D0//W (κ) ! g⊗D//W (κ) between the respective sets of orbits. [cf. Proposition 3.16]

• Each fiber of the surjection pr : g ⊗ D0 ↠ g ⊗ D has size |g ⊗ W (κ)| and is formed of
elements having the same last jump. [cf. Definition 3.15, Corollary 3.23]

This is summarized by the following diagram:

g⊗W (Fperf)  −↩ g⊗D0
|g⊗W (κ)|:1

−−↠ g⊗D

g⊗W (Fperf)//W (Fperf)
∼
 ! g⊗D0//W (κ) −−↠ g⊗D//W (κ)

lastjump([m]) = lastjump([D0]) = lastjump([D])

Hence, counting G-extensions K|F with lastjump(K) < v essentially amounts to counting
elements of g⊗D satisfying certain equations (given in Definition 3.9). This fact, which is made
more precise in Lemma 4.1, will be used throughout Section 4 to count local extensions.

3.1. Fundamental domain. In Theorem 2.19, we have constructed a bijection between the
set H1(ΓF, G) and the set g ⊗ W (Fperf)//W (Fperf) of (g ⊗ W (Fperf), ◦)-orbits of g ⊗ W (Fperf).
For counting orbits, it is often convenient to work with a fundamental domain consisting of
exactly one representative from each orbit. Here, we do a little less: we define a canonical
subset g ⊗ D0 of g ⊗ W (Fperf) which is a fundamental domain up to the action of the finite
subgroup (g ⊗W (κ), ◦) of (g ⊗W (Fperf), ◦) (see Theorem 3.6). This allows us to count orbits
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using the orbit-stabilizer theorem. This “fundamental domain” is closely related to Abrashkin’s
notion of “special elements” (cf. [Abr23, Definition 2.1]) and to [Ima24, Lemma 3.2].

Lemma 3.1. The set g⊗W (κ) is finite of size |κ|n if |g| = pn.

Proof. As in the proof of Lemma 2.12, we may assume that g ≃ Z/pnZ. Then, g ⊗ W (κ) =
W (κ)/pnW (κ) = Wn(κ) since the finite field κ is perfect. The ring Wn(κ) of Witt vectors of
length n over κ has size |κ|n. □

Definition 3.2. We define the following free W (κ)-submodule of W (F) ⊆ W (Fperf):

D0 :=
⊕

a∈{0}∪N\pN

W (κ)π̃−a.

Note that D0/pD0 =
⊕

a∈{0}∪N\pN κπ−a ⊆ F ⊆ Fperf. The set g ⊗ D0 is the sub-W (κ)-

module of g ⊗ W (Fperf) consisting of elements D of the form
∑

a∈{0}∪N\pNDaπ̃
−a, where the

coordinates Da belong to the Lie W (κ)-algebra g⊗W (κ) and are almost all zero.

Lemma 3.3.

(i) If x ∈ Fperf is such that ℘(x) ∈ D0/pD0, then x ∈ κ.
(ii) The map D0/pD0 ! F/℘(F) induced by the inclusion D0/pD0 ⊆ F is a surjection.

Proof.

(i) Since ℘(x) = xp − x lies in F, and since Fperf is a purely inseparable extension of F, we
have x ∈ F. If the (π-adic) valuation of x is negative, then the valuation of ℘(x) = xp−x
is p times that of x, hence is a non-zero multiple of p, contradicting ℘(x) ∈ D0/pD0.
Thus, x ∈ κJπK. Assume that x ̸∈ κ, and write x = x0 + x1, where x0 ∈ κ and x1 has
positive valuation. Then ℘(x1) = xp1 − x1 has valuation equal to that of x1, which is
positive, contradicting the fact that ℘(x1) = ℘(x)− ℘(x0) belongs to D0/pD0.

(ii) This is [Pot24, Proposition 5.2 (b)]. □

Lemma 3.4.

(i) Let D ∈ g⊗D0 and g ∈ g⊗W (Fperf). Then, there is an equivalence:

g.D ∈ g⊗D0 ⇐⇒ g ∈ g⊗W (κ).

(ii) The natural map g⊗D0 ! g⊗W (Fperf)//W (Fperf) is surjective.

Proof. We first prove (i)(⇐). Write D =
∑

a∈{0}∪N\pNDaπ̃
−a and assume that g ∈ g ⊗W (κ).

Recall that the Baker–Campbell–Hausdorff formula takes the form x ◦ y = x+ y + 1
2 [x, y]. We

have:

g.D = σ(g) ◦D ◦ (−g)

= σ(g) +D + (−g) +
1

2
[σ(g), D] +

1

2
[D,−g] +

1

2
[σ(g),−g]

= σ(g) ◦ (−g) +D − 1

2

[
D, σ(g) + g

]
= σ(g) ◦ (−g) +D0 −

1

2
[D0, σ(g) + g]︸ ︷︷ ︸

∈g⊗W (κ)

+
∑

a∈N\pN

(
Da −

1

2

[
Da, σ(g) + g

])
︸ ︷︷ ︸

∈g⊗W (κ)

π̃−a ∈ g⊗D0.

For g = Z/pZ, (i)(⇒) and (ii) follow from Lemma 3.3 since g⊗D0 = D0/pD0, g⊗W (Fperf) =
Fperf, g⊗W (κ) = κ, and g.D = ℘(g) +D. To show (i)(⇒) and (ii) for arbitrary g, we proceed
by induction on the size of g as in the proof of Lemma 2.18. The case g = 0 is clear, so we
assume that g is non-zero. Pick a subalgebra n ⊆ Z(g) isomorphic to Z/pZ. We have already
shown the claims for the abelian Lie algebra n, and the claims hold for the Lie algebra g/n by
the induction hypothesis.

We now prove (i)(⇒). Assume that g.D ∈ g⊗D0. Let ḡ ∈ (g/n)⊗W (Fperf) be the projection
of g. By hypothesis, the projections of both D and g.D belong to (g/n) ⊗ D0, so ḡ belongs to
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(g/n) ⊗ W (κ) by the induction hypothesis. Pick an arbitrary lift γ ∈ g ⊗ W (κ) of ḡ, and let
δ := g− γ, which belongs to n⊗W (Fperf) ⊆ Z(g)⊗W (Fperf). We have g.D = (γ+ δ).(D+0) =
γ.D + ℘(δ) by Lemma 2.16, and g.D ∈ g ⊗ D0 by hypothesis. By the implication (⇐) proved
above, γ.D ∈ g ⊗ D0, so ℘(δ) = g.D − γ.D ∈ g ⊗ D0. Since δ ∈ n ⊗ W (Fperf), it follows
that ℘(δ) ∈ n ⊗ D0. As n ≃ Z/pZ satisfies (i)(⇒), we conclude that δ ∈ n ⊗ W (κ). Hence,
g = γ + δ ∈ g⊗W (κ).

Finally, we prove (ii). Consider an element m ∈ g⊗W (Fperf) and let m̄ ∈ (g/n)⊗W (Fperf) be
its projection. By the induction hypothesis, there is an element ḡ ∈ (g/n)⊗W (Fperf) such that
the element n̄ := ḡ.m̄ belongs to (g/n)⊗D0. Choose lifts g ∈ g⊗W (Fperf) and n ∈ g⊗D0 of ḡ
and n̄, respectively. The element g.m − n belongs to n ⊗W (Fperf). As n ≃ Z/pZ satisfies (ii),
there is an element h ∈ n⊗W (Fperf) such that i := h.(g.m− n) ∈ n⊗D0. By Lemma 2.16, we
have (g+h).m = g.m+h.0 and i = h.(g.m−n) = g.m−n+h.0, so (g+h).m = n+ i ∈ g⊗D0.
We have shown that the (g⊗W (Fperf), ◦)-orbit of m intersects g⊗D0. □

Remark 3.5. By Lemma 3.4 (i)(⇐), the action of (g⊗W (Fperf), ◦) on g⊗W (Fperf) restricts to
an action of (g ⊗ W (κ), ◦) on g ⊗ D0. We denote by g ⊗ D0//W (κ) the set of orbits of g ⊗ D0

under the action of (g⊗W (κ), ◦).

Theorem 3.6 (Local approximate fundamental domain). There is a bijection

α0 : g⊗W (Fperf)//W (Fperf)
∼
−! g⊗D0//W (κ)

whose inverse is the map induced by the inclusion g⊗D0 ! g⊗W (Fperf). Moreover, if [D] =
α0([m]), then Stab(g⊗W (Fperf),◦)(m) ≃ Stab(g⊗W (κ),◦)(D).

Proof. Lemma 3.4 (i) implies that the natural map g ⊗ D0//W (κ) ! g ⊗ W (Fperf)//W (Fperf) is

injective and that Stab(g⊗W (κ),◦)(D) = Stab(g⊗W (Fperf),◦)(D) ≃ Stab(g⊗W (Fperf),◦)(m) if [D] =

α0([m]). Lemma 3.4 (ii) implies the surjectivity of this map. □

We again extend the definition of the last jump like in Definition 2.23:

Definition 3.7. If [D] ∈ g⊗D0//W (κ) is the image of [m] ∈ g⊗W (Fperf)//W (Fperf) under α
0, we

define lastjump([D]) := lastjump([m]). Note that lastjump([D]) = lastjump(D).

3.2. Ramification equations. In this subsection, we introduce for each v > 0 a property J(v)
on elements D ∈ g⊗D0. This property will later be shown to coincide with the condition that
lastjump(D) < v (Theorem 3.20).

For any b ∈ N \ pN and v ∈ R>0, we define

µv(b) := max(0, ⌈logp(v/b)⌉) = min{k ≥ 0 | bpk ≥ v} = |{k ≥ 0 | bpk < v}| (3.1)

so that µv(b) = 0 ⇔ b ≥ v, that bpµv(b) ≥ v for all v, and that bpµv(b) < pv when b < pv. Note
the following property of µv:

Lemma 3.8. For any v > 0, we have:∑
a∈N\pN

µv(a) = ⌈v⌉ − 1.

Proof. We have µv(a) = |{k ≥ 0 | apk < v}|. As every integer 0 < γ < v can be uniquely
written as apk for some a ∈ N \ pN and some k ∈ {k ≥ 0 | apk < v}, we have:∑

a∈N\pN

µv(a) = |{γ ∈ N | 0 < γ < v}| = ⌈v⌉ − 1. □

If n1 ≥ n2 are integers, we define

η(n1, n2) :=

{
1 if n1 > n2
1
2 if n1 = n2.

(3.2)
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Definition 3.9. Let v ∈ R>0, and let D ∈ g ⊗ D0. Write D =
∑

a∈{0}∪N\pNDaπ̃
−a with

Da ∈ g ⊗ W (κ). We say that D satisfies property J(v) if the following equalities hold for all
b ∈ N \ pN:

pµv(b)σµv(b)(Db) = −b−1
∑

a1,a2∈N\pN,
n1≥n2≥0:

bpµv(b)=a1pn1+a2pn2 ,
a1pn1<v, a2pn1<v

η(n1, n2)a1p
n1 [σn1(Da1), σ

n2(Da2)] , (3.3)

0 =
∑

a1,a2∈N\pN,
n≥0:

b=a1pn+i+a2,
a1pn<v, a2pn<v

a1p
n
[
σn+i(Da1), Da2

]
for any i > 0 such that bp−i ≥ v. (3.4)

(The condition a2p
n1 < v in Equation (3.3) is stronger than a2p

n2 < v. This is not a typo!)

Remark 3.10. The sum in Equation (3.3) can be simplified by remarking that either n2 = n1 (in
which case η(n1, n2) =

1
2 and n2 ≤ µv(b)), or n1 > n2, in which case n2 necessarily equals µv(b)

(comparing valuations in bpµv(b) = a1p
n1 + a2p

n2), η(n1, n2) = 1, and a2 ≡ b mod pn1−µv(b).

Example 3.11. Assume that g is abelian. Then, the right-hand sides of Equations (3.3) and (3.4)

vanish, so property J(v) means that pµv(b)Db = 0 for all b ∈ N \ pN. We retrieve a fact from
class field theory: the p-part of the inertia group of the maximal abelian extension of F with
lastjump < v is isomorphic to

∏
b∈N\pN Z/pµv(b)Z. (See for example [Gun24, Lemma 4.1].)

Remark 3.12. When pg = 0 (i.e., g is a Lie Fp-algebra), the equations of Definition 3.9 take
a simpler form, given in Corollary 6.1. These equations are easier to analyze, and considering
this special case (detailed in Subsections 6.1 and 6.2) is recommended for a first reading.

Proposition 3.13. Let v > 0, let D ∈ g⊗D0, and assume that D satisfies J(v). Then:

(i) For all b ∈ N \ pN, pµv(b)Db belongs to [g, g]⊗W (κ), and in particular to Z(g)⊗W (κ).

(ii) For all b ∈ N \ pN, pµv(b)Db is a p-torsion element.
(iii) For all b ∈ N \ pN such that b ≥ 2v, we have Db = 0.

Proof.

(i) Applying σ−µv(b) to Equation (3.3) (σ is an automorphism of W (κ)), we can express

pµv(b)Db as a sum of elements of [g, g]⊗W (κ).

(ii) By Equation (3.3), checking that pµv(b)Db is a p-torsion element amounts to the vanishing
of the following sum:∑

a1,a2∈N\pN,
n1≥n2≥0:

bpµv(b)=a1pn1+a2pn2 ,
a1pn1<v, a2pn1<v

η(n1, n2)a1p
n1+1[σn1(Da1), σ

n2(Da2)].

By (i), the elements pµv(a1)Da1 and pµv(a2)Da2 are central, and in particular the commu-
tator pn1+1[σn1(Da1), σ

n2(Da2)] vanishes as soon as n1 +1 ≥ µv(a1) or n1 +1 ≥ µv(a2).
Therefore, non-zero terms can only occur when µv(a1) > n1+1 and µv(a2) > n1+1, i.e.,
when a1p

n1 < v
p and a2p

n1 < v
p . But then, the two inequalities a1p

n1 + a2p
n2 < 2v

p < v

and bpµv(b) ≥ v (by definition of µv(b)) contradict the equality a1p
n1 + a2p

n2 = bpµv(b),
meaning that there are no non-zero terms in the sum.

(iii) The inequality b ≥ 2v implies µv(b) = 0. By Equation (3.3), we have:

Db = −b−1
∑

a1,a2∈N\pN,
n1≥n2≥0:

b=a1pn1+a2pn2 ,
a1pn1<v, a2pn1<v

η(n1, n2)a1p
n1 [σn1(Da1), σ

n2(Da2)].

An equality b = a1p
n1 + a2p

n2 with a1p
n1 , a2p

n1 < v would imply b < 2v, which is not
true. Hence, the sum is empty and Db = 0. □
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3.3. The second fundamental domain. We define a second “fundamental domain” g ⊗ D,
which is “lossy” (it essentially forgets about the unramified part and thus several G-extensions
are mapped to the same element). However, it turns out that it retains enough information to
determine the last jump of extensions (cf. Corollary 3.23). This second fundamental domain
will be useful to establish our local–global principle and for counting.

Definition 3.14. We define the following free W (κ)-submodule of W (F) ⊆ W (Fperf):

D :=
⊕

a∈N\pN

W (κ)π̃−a

and we denote by pr: D0 ↠ D the natural projection, discarding the summand for a = 0.

The surjection pr : D0 ↠ D induces a surjection g⊗D0 ↠ g⊗D, which we also denote by pr.
Concretely, it maps an element D0+

∑
a∈N\pNDaπ̃

−a of g⊗D0 to the element
∑

a∈N\pNDaπ̃
−a.

In particular, each fiber of pr has (finite) size |g⊗W (κ)|.
Note that the variable D0 does not appear in Equations (3.3) and (3.4). Therefore, whether

an element D ∈ g ⊗ D0 satisfies J(v) only depends on its projection pr(D) ∈ g ⊗ D, and it
makes sense to extend the definition of property J(v) to g⊗D as follows:

Definition 3.15. Let v > 0. We say that an element D =
∑

a∈N\pNDaπ̃
−a of g ⊗ D satisfies

property J(v) if Equations (3.3) and (3.4) hold for all b ∈ N \ pN.

Proposition 3.16. If g ∈ g ⊗W (κ) and D ∈ g ⊗ D0, then the element pr(g.D) ∈ D depends
only on g and pr(D). In other words, there is a (unique) action of (g⊗W (κ), ◦) on g⊗D such
that pr(g.D) = g.pr(D) for all D ∈ g⊗D0. Moreover:

(i) This action is W (κ)-linear, i.e., it is an action on the W (κ)-module g⊗D;
(ii) g⊗W (κ) acts trivially on Z(g)⊗D, so that orbits of central elements are of size 1;
(iii) Let v > 0. For any g ∈ g⊗W (κ) and any D ∈ g⊗D satisfying J(v), the element g.D

satisfies J(v).

Proof. The computation in the proof of Lemma 3.4 (i) (⇐) shows that, for every D ∈ g⊗D0:

pr(g.D) =
∑

a∈N\pN

(
Da −

1

2

[
Da, σ(g) + g

])
π̃−a.

Since D0 does not appear in this formula, pr(g.D) only depends on g and D′ := pr(D). This
dependency is given by the following action of (g⊗W (κ), ◦) on elements D′ ∈ g⊗D:

g.D′ := D′ − 1

2

[
D′, σ(g) + g

]
. (3.5)

That action is visibly W (κ)-linear in D′, and the action on a central element D′ ∈ Z(g)⊗D is
indeed trivial. With this definition, we have pr(g.D) = g.pr(D).

It remains to check that g.D satisfies J(v) if g ∈ g ⊗ W (κ) and D ∈ g ⊗ D satisfies J(v).
As illustrated by Equation (3.5), g.D and D only differ by a commutator (hence an element
of Z(g) ⊗ D). Thus, the invariance of Equation (3.4) is immediate. In Equation (3.3), the
right-hand side is also left unchanged, so it suffices to prove that

pµv(b)Db = pµv(b)

(
Db −

1

2
[Db, σ(g) + g]

)
.

By Proposition 3.13 (ii), the element pµv(b)Db is central. Therefore, pµv(b)[Db, σ(g) + g] = 0,
which proves the claim. □

Definition 3.17. We denote by g⊗D//W (κ) the set of orbits of g⊗D under the (g⊗W (κ), ◦)-
action of Proposition 3.16. For any v > 0, we say that an orbit [D] ∈ g ⊗ D//W (κ) satisfies
property J(v) if D satisfies property J(v) (by Proposition 3.16 (iii), this is independent of the
choice of D).
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Definition 3.18. We define the map α : g ⊗W (Fperf)//W (Fperf) ! g ⊗ D//W (κ) as the following
composition:

g⊗W (Fperf)//W (Fperf) g⊗D0//W (κ)

g⊗D//W (κ)

α0

∼

α
pr

Lemma 3.19 (Twisting). Let n be a Lie subalgebra of the center of g. For any m ∈ g⊗W (Fperf)
and n ∈ n⊗W (Fperf), if

α([m]) = [D] ∈ g⊗D//W (κ) and α([n]) = [E] ∈ n⊗D//W (κ),

then
α([m+ n]) = [D + E] ∈ g⊗D//W (κ).

Proof. By definition of α, there are elements g ∈ g⊗W (Fperf) and h ∈ n⊗W (Fperf) such that
pr(g.m) = D and pr(h.n) = E. By Lemma 2.16, we have pr((g+h).(m+n)) = pr(g.m+h.n) =
pr(g.m) + pr(h.n) = D + E, which belongs to g⊗D. So α([m+ n]) = [D + E]. □

3.4. Determination of the last jump. The goal of this subsection is to deduce the following
theorem from the results of [Abr98]:

Theorem 3.20. Let m ∈ g⊗W (Fperf) and v ∈ R>0. Then, the following are equivalent:

(a) lastjump(m) < v.
(b) α0([m]) satisfies property J(v).
(c) α([m]) satisfies property J(v).

We briefly recall Abrashkin’s results in his own notation. For a non-increasing list of integers

n = (n1, . . . , ns) = (m1, . . . ,m1︸ ︷︷ ︸
d1

, . . . ,mk, . . . ,mk︸ ︷︷ ︸
dk

) ∈ Zs

with m1 > · · · > mk, define the rational number (generalizing Equation (3.2)):

η(n) :=
1

|StabSs(n)|
=

1

d1! · · · dk!
.

For any integer N ≥ 0, any rational number γ > 0, and any element D =
∑

a∈{0}∪N\pNDaπ̃
−a

of g⊗D0 (with Da ∈ g⊗W (κ)), define the following element of g⊗W (κ):

Fγ,−N (D) :=
∑

1≤s<p
a,n

η(n)a1p
n1 [σn1(Da1), . . . , σ

ns(Das)], (3.6)

where the sum is over all lengths s ∈ {1, . . . , p−1}, all s-tuples a = (a1, . . . , as) ∈ ({0}∪N\pN)s,
and all s-tuples n = (n1, . . . , ns) ∈ Zs satisfying n1 ≥ 0, n1 ≥ · · · ≥ ns ≥ −N and

a1p
n1 + · · ·+ asp

ns = γ. (3.7)

The main result from [Abr98] implies the following formula for the last jump (valid for all
Lie Zp-algebras g of nilpotency class < p):

Theorem 3.21 (Abrashkin’s theorem). Let D ∈ g ⊗ D0, and assume that the corresponding
G-extension of F is a field. Then:

lastjump(D) = sup
(
{0} ∪

{
γ > 0

∣∣ ∃N0 ≥ 0, ∀N ≥ N0, Fγ,−N (D) ̸= 0
})

.

Proof. Consider a surjective continuous group homomorphism f : ΓF ! G in the class orb−1([D]).
For every v > 0, let gv be the Lie subalgebra of g corresponding to the image in G of the ram-
ification subgroup Γv

F under f . By definition, we have lastjump(D) = inf{v > 0 | gv = 0} =
sup ({0} ∪ {v > 0 | gv ̸= 0}). For each v > 0, by [Abr23, Theorem 3.1] (which is the “covariant”
version of [Abr98, Theorem B]), there is an integer N such that gv is the smallest ideal of g
whose extension of scalars g⊗W (κ) contains Fγ,−N (D) for all γ ≥ v. Therefore, the condition
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gv = 0 is equivalent to the vanishing of Fγ,−N (D) for all γ ≥ v and N large enough. The result
follows directly. □

We now specialize the definition of Fγ,−N (D) (Equation (3.6)) to our situation. Note that

Equation (3.7) can only hold if γ ∈ N[1p ]. Hence, for γ ̸∈ N[1p ], we always have Fγ,−N (D) = 0.

We now assume that γ = bpm for some b ∈ N\pN and m ∈ Z. In our case, since g has nilpotency
class ≤ 2, we need only to consider lengths s ≤ 2 as all commutators involving more elements
vanish.

• For s = 1, the equality a1p
n1 = γ (with a1 ∈ N \ pN, n1 ≥ 0) can only happen if γ is

an integer (m ≥ 0). In that case, a1 = b and n1 = m, and the corresponding term is
bpmσm(Db).

• For s = 2, the equality a1p
n1 + a2p

n2 = γ (with n1 ≥ 0) implies:
– If γ is an integer (m ≥ 0), then either a2 = 0 (and then a1 = b, n1 = m), or a2 ̸= 0

and n2 ≥ 0.
– If γ is not an integer (m < 0), then n2 < 0 and a2 ̸= 0. In particular, n2 < n1 and

thus η(n1, n2) = 1. Comparing valuations shows that n2 = m (there are no terms
if N ≤ −m).

Thus, we have the following expression for Fbpm,−N (D) when b ∈ N \ pN and m ≥ 0:

Fbpm,−N (D) = bpmσm(Db) (for s = 1)

+
m∑

n=−N

η(m,n)bpm[σm(Db), σ
n(D0)] (for s = 2, a2 = 0)

+
∑

a1,a2∈N\pN,
n1≥n2≥0:

bpm=a1pn1+a2pn2

η(n1, n2)a1p
n1 [σn1(Da1), σ

n2(Da2)] (for s = 2, a2 ̸= 0)

and the following expression for Fbpm,−N (D) when b ∈ N \ pN and m < 0, assuming N ≥ −m:

Fbpm,−N (D) =
∑

a1,a2∈N\pN,
n1≥0:

bpm=a1pn1+a2pm

a1p
n1 [σn1(Da1), σ

m(Da2)].

Proposition 3.22. Let D ∈ g ⊗ D0. Then, D satisfies property J(v) if and only if, for
all b ∈ N \ pN and m ∈ Z such that bpm ≥ v, and for every sufficiently large N , we have
Fbpm,−N (D) = 0.

Proof. For every b ∈ N \ pN, both property J(v) and the equality Fbpµv(b),−N (D) = 0 inde-

pendently imply that pµv(b)Db ∈ [g, g] ⊗W (κ) (see Proposition 3.13 (i) and the expression for
Fbpm,−N (D) above). We may hence prove the desired equivalence under the assumption that

pµv(b)Db ∈ [g, g] ⊗W (κ) for all b ∈ N \ pN. In particular, pmDb ∈ Z(g) ⊗W (κ) for all m ≥ 0
such that bpm ≥ v.

Under this assumption, every term in Fbpm,−N (D) with a1p
n1 ≥ v or a2p

n1 ≥ v can be
omitted, as the corresponding commutator vanishes once multiplied by pn1 . Thus, the vanishing
of Fbpm,−N (D) for every m < 0 such that bpm ≥ v is equivalent to Equation (3.4) (with
i := −m). Similarly, for all m ≥ µv(b), the sum over n in Fbpm,−N (D) (the one involving D0)
can be omitted, and the vanishing of Fbpµv(b),−N (D) is equivalent to Equation (3.3).

All that is left to do is to check that property J(v) implies the vanishing of Fbpm,−N (D) when
m > µv(b). In that case, the inequality bpm ≥ pv > 2v makes it impossible to simultaneously
have a1p

n1 + a2p
n2 = bpm and a1p

n1 , a2p
n1 < v. Thus, all terms in Fbpm,−N (D) vanish except

for bpmσm(Db), but that term also vanishes because m > µv(b) and pµv(b)Db is p-torsion by
Proposition 3.13 (ii). □

Finally, we prove Theorem 3.20:

Proof of Theorem 3.20. The equivalence (b) ⇔ (c) is clear (see Definitions 3.15 and 3.17)
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Pick a D ∈ g ⊗ D0 such that α0([m]) = [D]. By definition, m and D belong to the same
(g⊗W (Fperf), ◦)-orbit, and thus lastjump(m) = lastjump(D) (they define the same extension!).
Pick a g ∈ g⊗W (Falg) such that ℘(g) = D, and consider the continuous group homomorphism
f : ΓF ! G defined by τ 7! (−g) ◦ τ(g).

If f is surjective, the corresponding G-extension of F is a field, and the result follows from
Theorem 3.21 and Proposition 3.22 (recall that Fγ,−N (D) always vanishes if γ is not of the
form bpm for b ∈ N \ pN and m ∈ Z).

Assume now that f is not surjective. The image of f is then a certain subgroup H ⊂ G,
corresponding to a Lie subalgebra h ⊂ g. Then, the G-extension associated to f is not a field,
but the corresponding H-extension is a field. In that case, by Theorem 2.19 applied to h, there
is a D′ ∈ h⊗D0 and a g′ ∈ h⊗W (Falg) such that D′ = ℘(g′), and f(τ) = (−g′) ◦ τ(g′). By the
surjective case above (applied to the Lie algebra h), we have the equivalence:

lastjump(D′) < v ⇐⇒ D′ satisfies property J(v).

SinceD andD′ induce the same element [f ] ofH1(ΓF, G), we have lastjump(D) = lastjump(D′),
and D and D′ are in the same (g ⊗ W (Fperf), ◦)-orbit by Theorem 2.19. By Remark 3.5, D
and D′ are then in the same (g⊗W (κ), ◦)-orbit, and by Proposition 3.16 (iii) we have:

D satisfies property J(v) ⇐⇒ D′ satisfies property J(v).

Assembling everything together, we obtain (a) ⇔ (b). □

Corollary 3.23 (Irrelevance of D0). Let m ∈ g⊗D. By Theorem 3.20, all elements m′ ∈ g⊗D0

such that pr(m′) = m have the same last jump lastjump(m′), namely

inf
(
{0} ∪

{
v > 0

∣∣ m satisfies property J(v)
})

.

Definition 3.24. If m ∈ g⊗D, we define lastjump(m) to be the common value of lastjump(m′)
for all m′ ∈ pr−1(m) (cf. Corollary 3.23), and we let lastjump([m]) := lastjump(m) where
[m] ∈ g⊗D//W (κ) is the (g⊗W (κ), ◦)-orbit of m (this is well-defined by Proposition 3.16 (iii)).

4. Counting local extensions

The setting and notations are identical to those of Section 3. This section deals with obtaining
estimates of the number ∑

K∈ÉtExt(G,F):
lastjump(K)<v

1

|Aut(K)|

for various values of v, thus describing the distribution of last jumps of G-extensions of F. The
starting point is the following observation:

Lemma 4.1. Let v > 0. Using the notation introduced in Definition 3.24, we have the equality∑
K∈ÉtExt(G,F):
lastjump(K)<v

1

|Aut(K)|
= |{D ∈ g⊗D | lastjump(D) < v}| ,

as well as the analogous equality if the condition < v is replaced by = v.

Proof. We focus on the first claim, as the second claim directly follows from it. Using the
three (stabilizer-preserving) bijections of Lemma 2.1, Theorem 2.19 and Theorem 3.6 and the
notation of Definition 3.7, the left-hand side rewrites as follows:∑
K∈ÉtExt(G,F):
lastjump(K)<v

1

|Aut(K)|
=

∑
[D]∈g⊗D0//W (κ):

lastjump([D])<v

1

|Stab(g⊗W (κ),◦)(m)|

=

∣∣{D ∈ g⊗D0
∣∣ lastjump(D) < v

}∣∣
|g⊗W (κ)|

by the orbit-stabilizer theorem.
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Recalling Definition 3.24 and the fact that the projection map pr: g⊗D0 ↠ g⊗D is |g⊗W (κ)|-
to-one, we see that this equals |{D ∈ g⊗D | lastjump(D) < v}| as claimed. □

Let

r := dimFp(g[p]) and M :=

{
1 if g[p] is abelian,

1 + p−1 otherwise,

as in Theorem 1.2 for G = (g, ◦). (Corollary 4.8 below gives an interpretation of M as the
largest possible last jump smaller than 2 for G-extensions of F.)

The main results of this section are the following estimates for the number of elements of g⊗D
with bounded last jump (this is motivated by Lemma 4.1):

Theorem 4.2. For some (explicit) constant E ≥ 1 (which does not depend on κ), the following
estimates hold:

(a) |{D ∈ g⊗D | lastjump(D) = 0}| = |{D ∈ g⊗D | lastjump(D) < 1}| = 1.
(b) |{D ∈ g⊗D | lastjump(D) ≤ M}| = |{D ∈ g⊗D | lastjump(D) < 2}| = |κ|r.
(c) For any l ∈ Z≥0, we have |{D ∈ g⊗D | lastjump(D) < l + 1}| ≤ El|κ|rl.
(d) Assume that g[p] is non-abelian. Then:

(i) for all integers l ≥ p, we have |{D ∈ g⊗D | lastjump(D) < l + 1}| ≤ El|κ|rl−1.
(ii) for all l ∈ {1, . . . , p− 1}, we have:

|{D ∈ g⊗D | lastjump(D) < l(1 + p−1)}| = O
(
El|κ|rl−1

)
where the implied constant in the O-estimate depends only on g[p].

Points (a) and (b) follow from Lemma 4.5 and Corollary 4.8 respectively. The proof of
points (c) and (d) will be the goal of Subsection 4.3.

Theorem 4.2 is later used for the global results of Section 5, where it is applied at each place P
of the global function field Fq(T ) by letting F be its completion at P and π be a uniformizer.

4.1. Smallness criteria for the last jump. We use Theorem 3.20 to characterize elements
D =

∑
a∈N\pNDaπ̃

−a ∈ g⊗D whose last jump is “small”:

Corollary 4.3 (Small v). Let v ≤ p. We have lastjump(D) < v if and only if:

pσ(Db) = −(2b)−1
∑

1≤a1,a2<v:
bp=a1+a2

a1[Da1 , Da2 ] for all b ∈ N \ pN with b < v, (4.1)

Db = −(2b)−1
∑

1≤a1,a2<v:
b=a1+a2

a1[Da1 , Da2 ] for all b ∈ N \ pN with b ≥ v, (4.2)

0 = [σiD⌊v⌋, Da]
for all 1 ≤ a < v and i > 0 with ap−i ≥ v − ⌊v⌋
if v is not an integer.

(4.3)

Proof. We apply Theorem 3.20. Here, µv(b) = 1b<v. In all summands in Equations (3.3)
and (3.4), the conditions of the form apn < v are equivalent to n = 0, a < v. Equations (4.1)
and (4.2) thus correspond to Equation (3.3) (note that η(n1, n2) = 1

2 as n1 = n2 = 0), and

Equation (4.3) corresponds to Equation (3.4). (For i > 0, any b ≥ vpi can be written in at
most one way as b = a1p

i + a2 with 1 ≤ a1, a2 < v ≤ p, namely a2 must be the remainder
of b modulo p, and a1 must be ⌊v⌋. Hence, at most one summand appears in each instance of
Equation (3.4). If v is an integer, then a1 = ⌊v⌋ = v is not strictly smaller than v.) □

Corollary 4.4. Let v ≤ p. Given elements Da ∈ g⊗W (κ) for all a < v, there is at most one
choice of the remaining elements Da for a ≥ v such that the element D :=

∑
Daπ̃

−a satisfies
lastjump(D) < v.

Proof. This follows immediately from Equation (4.2). □

We obtain the following characterization of unramified extensions, which directly implies
Theorem 4.2 (a):
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Lemma 4.5 (Unramified extensions). The following are equivalent:

(i) lastjump(D) < 1.
(ii) Da = 0 for all a ∈ N \ pN.
(iii) lastjump(D) = 0.

Proof. The implication (iii)⇒(i) is obvious. The implications (i)⇒(ii) and (ii)⇒(iii) follow from
Corollary 4.3 with v = 1 and v ! 0+, respectively. □

Proposition 4.6. For any m ≥ 0, the following are equivalent:

(i) lastjump(D) < 1 + p−m

(ii) lastjump(D) ≤ 1 + p−(m+1)

(iii) Da = 0 for all a ≥ 2, pD1 = 0, and [σiD1, D1] = 0 for all 0 < i ≤ m.

Proof. Apply Corollary 4.3. For any v ∈ (1, 2], the inequalities 1 ≤ a1, a2 < v imply that
a1 = a2 = 1, and in particular commutators [Da1 , Da2 ] vanish. Therefore, Equation (4.1)
is equivalent to pD1 = 0, and Equation (4.2) is equivalent to Db = 0 for b ≥ 2. Finally,
Equation (4.3) amounts to [σiD1, D1] = 0 for all i > 0 such that p−i ≥ v − 1. Thus, for any

v ∈ (1 + p−(m+1), 1 + p−m], (iii) is equivalent to lastjump(D) < v, yielding the result. □

Remark 4.7. Let m ≥ 0. For any element D ∈ g ⊗ D, condition (iii) of Proposition 4.6 means
that D is of the form D1π̃

−1 where D1 is an element of g[p] ⊗ W (κ) = g[p] ⊗Fp κ whose
projection x to (g[p]/Z(g[p]))⊗Fp κ belongs to the set

Am(κ) :=
{
x ∈ (g[p]/Z(g[p]))⊗ κ

∣∣ [σi(x), x] = 0 for all 0 < i ≤ m
}
.

In particular, Proposition 4.6 implies the following equality:∣∣{D ∈ g⊗D
∣∣ lastjump(D) < 1 + p−m

}∣∣ = |Am(κ)|︸ ︷︷ ︸
choices of x

· |Z(g[p])⊗ κ|.︸ ︷︷ ︸
choices of D1 once x is fixed

From Proposition 4.6, we deduce the following characterization, which directly implies The-
orem 4.2 (b) (we have |g[p]⊗Zp W (κ)| = |g[p]⊗Fp κ| = |κ|r).

Corollary 4.8 (Slightly ramified extensions). The following are equivalent:

(i) lastjump(D) < 2.
(ii) lastjump(D) ≤ M .
(iii) Da = 0 for all a ≥ 2, and pD1 = 0.

Proof. If g[p] is non-abelian, this is simply the case m = 0 of Proposition 4.6. Assume now
that g[p] is abelian. Then, when pD1 = 0, all commutators [σiD1, D1] vanish, making condi-
tion (iii) of Proposition 4.6 independent of the value of m (it matches condition (iii) here). It
remains only to observe that lastjump(D) < 2 implies (iii) and hence implies lastjump(D) <
1 + p−m for all m ≥ 0, meaning that lastjump(D) ≤ 1. □

Finally, we generalize the implication (i) ⇒ (iii) of Proposition 4.6 to slightly larger values
of the last jump:

Proposition 4.9. Let 1 ≤ l ≤ p− 1 and m ≥ 1.

(i) If lastjump(D) < l + p−m, then [σiDl, Da] = 0 for all 1 ≤ i ≤ m and 1 ≤ a ≤ l.
(ii) If lastjump(D) < l + lp−m, then [σiDl, Da] = 0 for all 1 ≤ i ≤ m− 1 and 1 ≤ a ≤ l − 1

and [σiDl, Dl] = 0 for all 1 ≤ i ≤ m.
Proof.

(i) For any 1 ≤ i ≤ m and 1 ≤ a ≤ l, we have ap−i ≥ p−m. Hence, Equation (4.3) implies
[σiDl, Da] = 0.

(ii) This follows in the same way since ap−i ≥ lp−m for 1 ≤ i ≤ m − 1 and 1 ≤ a ≤ l − 1
and since lp−i ≥ lp−m for 1 ≤ i ≤ m. □
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4.2. Equations in Witt vectors. Before we start proving points (c) and (d) of Theorem 4.2,
we advise the reader to first read the proof in the case where g has exponent p, which is given
in Proposition 6.2: this special case is much easier to deal with, and gives a simple illustration
of the rough idea of our general proof — namely that fixing Db for the smallest few values of b
essentially determines Db for all b.

Let r := dimFp(g[p]). The finite Zp-module g decomposes into a product:

g ≃
r∏

i=1

Z/pniZ as Zp-modules.

We have g ⊗ W (κ) ≃
∏

iWni(κ) as Zp-modules (see also Lemma 3.1). If X is an element of

g ⊗W (κ), 1 ≤ i ≤ r, and 0 ≤ j < ni, we denote by X(ij) ∈ κ the j-th coordinate of the i-th
Witt vector (in Wni(κ)) associated to X.

Let v ∈ R>0. According to Theorem 3.20, equations characterizing elements D ∈ g ⊗ D
with lastjump(D) < v are given in Definition 3.9. We show below that these are polynomial

equations1 in the indeterminates D
(ij)
a ∈ κ, where the triple (a, i, j) belongs to the countable set

Ω := {(a, i, j) | a ∈ N \ pN, 1 ≤ i ≤ r, 0 ≤ j < ni} .

Moreover, these equations do not depend on anything besides the Lie algebra g and the real
number v (they depend neither on F nor on κ, and have coefficients in Fp).

Consider the following polynomial ring in countably many variables:

R := Fp[(D
(ij)
a )(a,i,j)∈Ω]

and its perfect closure

Rperf = Fp[((D
(ij)
a )p

−∞
)(a,i,j)∈Ω].

Since
∏

iWni(R) is the image of the Lie algebra g⊗W (R) in g⊗W (Rperf) =
∏

iWni(Rperf), it
naturally inherits a Lie algebra structure. Define Da to be the element of

∏
iWni(R) for which

the j-th coordinate of the i-th Witt vector is the indeterminate D
(ij)
a . Then, each side of the

Equations (3.3) and (3.4) defining property J(v) (for given b and i) can be interpreted as an
element of

∏
iWni(R). Equating the coordinates of these elements for all admissible values of b

and i, we obtain (polynomial) equations in the indeterminates D
(ij)
a . We let Iv be the ideal

of R associated to these equations.
By construction, elements D ∈ g⊗D with lastjump(D) < v are in one-to-one correspondence

with the solutions to these polynomial equations in κΩ, i.e., with the κ-points of the affine
Fp-scheme Jv := Spec(R/Iv). (That all but finitely many coordinates vanish actually follows
from the equations, cf. Proposition 3.13 (iii).)

The following remark is not used in this paper, but it suggests a moduli space interpretation:

Remark 4.10. Let J0v := Alogp|g|
Fp

× Jv (reincorporating the variables D
(ij)
0 ). By Theorem 3.20,

there is a bijection J0v(κ) ≃
{
D ∈ g⊗D0

∣∣ lastjump(D) < v
}
. Up to some action, the space J0v

thus parametrizes ramified G-covers of the one-dimensional infinitesimal neighborhood of a
single point where the “depth” of wild ramification is < v. This bears some analogy to Hurwitz
spaces, which parametrize tame covers of the line whose branch divisor has a fixed degree.

Grading. We define a Q≥0-grading on the Fp-algebra Rperf by assigning the degree p−µv(a)+j

to the generator D
(ij)
a . Note that µv(a) is bounded, so the degrees of monomials in R form

a discrete (hence well-founded) subset of R≥0. The following general remark shows how the
grading on Rperf induces a partial grading on g ⊗ W (Rperf), for which Da ∈ g ⊗ W (Rperf) is

homogeneous of degree p−µv(a):

1As equations over the Witt vectors, these equations are not polynomial as they involve the absolute Frobenius
endomorphism σ, which is why we rephrase them as equations over κ. They are, however, “algebraic difference
equations” (in the sense of [Bé09, SV21, HHYZ24]) over the difference ring (W (κ), σ).
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Remark 4.11. Let R =
⊕

d∈Q≥0
Rd be a Q≥0-graded ring of characteristic p. For any d ∈ Q≥0,

let Vd ⊆ W (R) be the set of Witt vectors over R whose j-th coordinate is homogeneous of
degree dpj for all j:

Vd :=
{
(x0, x1, . . . ) ∈ W (R)

∣∣ xj ∈ Rdpj for all j ≥ 0
}
.

Looking at the definition of addition and multiplication of Witt vectors, one verifies that each Vd

is a Zp-submodule of W (R), that if (x0, x1, . . . ) ∈
⊕

d′≤d Vd′ , then xj ∈
⊕

d′≤dRd′pj for all
j ≥ 0, and that Vd · Ve ⊆ Vd+e. Moreover, if σ is the Frobenius endomorphism of R, then
σ(Vd) ⊆ Vdp. If g is a Lie Zp-algebra, we obtain Zp-submodules g ⊗ Vd of g ⊗W (R) satisfying
[g⊗ Vd, g⊗ Ve] ⊆ g⊗ Vd+e. We call the elements of Vd or of g⊗ Vd homogeneous of degree d.

4.3. Bounding the number of extensions with large last jump.

Proving Theorem 4.2 (c). Fix an integer l ≥ 0, and define the following finite subset of Ω:

Ω•
l := {(a, i, j) ∈ Ω | ni − µl+1(a) ≤ j} ,

whose cardinality satisfies:

|Ω•
l | =

∑
a∈N\pN

r∑
i=1

min(ni, µl+1(a)) ≤ r
∑

a∈N\pN

µl+1(a) ==
Lemma 3.8

rl. (4.4)

We shall show that, if D ∈ g⊗D is such that lastjump(D) < l + 1, then the coordinates D
(ij)
a

for triples (a, i, j) ∈ Ω•
l determine D up to at most |G|2l choices. To this end, we introduce the

following polynomial ring in |Ω•
l | variables:

R•
l := Fp[(D

(ij)
a )(a,i,j)∈Ω•

l
].

Proposition 4.12. The k-algebra R/Il+1 is a finite R•
l -module of rank at most |G|2l.

Proof. We are going to show that every polynomial in R is congruent, modulo Il+1, to a linear
combination with coefficients in R•

l of monomials of the form∏
(a,i,j)∈Ω\Ω•

l

(
D(ij)

a

)eaij
where 0 ≤ eaij < p2µl+1(a). (4.5)

As the number of such monomials is
∏

(a,i,j)∈Ω\Ω•
l
p2µl+1(a), which by Lemma 3.8 is at most

p2l
∑

i ni = |G|2l, this implies the result.

Recall that Da is homogeneous of degree p−µl+1(a) for any a, and recall the properties listed
in Remark 4.11. We see that the left-hand side pµl+1(b)σµl+1(b)(Db) of Equation (3.3) is homoge-

neous of degree pµl+1(b)·p−µl+1(b) = 1. (The multiplication by pµl+1(b) does not change the degree.

The Frobenius homomorphism σµl+1(b) multiplies the degree by pµl+1(b).) The right-hand side
is a sum of terms which are homogeneous of degree at most 2

p < 1. (σn1(Da1) is homogeneous

of degree pn1 · p−µl+1(a1), which is ≤ 1
p as a1p

n1 < l + 1, and similarly for σn2(Da2), so each

summand is homogeneous of degree at most 2
p .)

Assume now that (a, i, j) belongs to Ω \ Ω•
l , i.e., that j + µl+1(a) < ni, and consider the

(i, j + µl+1(a))-coordinate of Equation (3.3) for b = a. Recall that multiplication by p of Witt
vectors coincides with Ver ◦ σ. The left-hand side(

pµl+1(a)σµl+1(a)Da

)(i, j+µl+1(a))
=
(
Verµl+1(a) σ2µl+1(a)Da

)(i, j+µl+1(a))

=
(
σ2µl+1(a)Da

)(ij)
=
(
D(ij)

a

)p2µl+1(a)

has degree p2µl+1(a) ·p−µl+1(a)+j = pj+µl+1(a), and the right-hand side has strictly smaller degree
by the previous paragraph. For all triples (a, i, j) ∈ Ω \ Ω•

l , interpret the (i, j + µl+1(a))-
coordinate of Equation (3.3) as a rewriting rule (from left to right): any monomial in R which

is divisible by
(
D

(ij)
a

)p2µl+1(a)

can be rewritten by replacing this factor with the right-hand
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side. All the rules obtained for all triples (a, i, j) ∈ Ω \ Ω•
l define a rewriting system on R.

The strict inequality of degrees shown above together with the well-foundedness of the set of
possible degrees of monomials implies that this rewriting system is strongly normalizing.

Consider an arbitrary P ∈ R, and let P̃ ∈ R be a normal form of P , obtained by rewriting P
arbitrarily until it cannot be rewritten any further. We have P ≡ P̃ mod Il+1 by definition

of Il+1 and of the rewriting system. By definition, P̃ cannot be rewritten and thus does not

contain any monomial divisible by
(
D

(ij)
a

)p2µl+1(a)

for any (a, i, j) ∈ Ω \Ω•
l . This means that P̃

belongs to theR•
l -module spanned by monomials of the form given in Equation (4.5), concluding

the proof. □

Proposition 4.12 yields the following corollary, which implies Theorem 4.2 (c):

Corollary 4.13. For every tuple (da,i,j)(a,i,j)∈Ω•
l
∈ κ|Ω

•
l |, we have:∣∣∣∣{D ∈ g⊗D

∣∣∣∣ D(ij)
a = da,i,j for all (a, i, j) ∈ Ω•

l
lastjump(D) < l + 1

}∣∣∣∣ ≤ |G|2l.

In particular, we have Theorem 4.2 (c) with E = |G|2:

|{D ∈ g⊗D | lastjump(D) < l + 1}| ≤ |G|2l|κ||Ω•
l | ≤ |G|2l|κ|rl.

Proof. Denote by fl : R•
l ! R/Il+1 the ring homomorphism obtained as the composition R•

l ↪!
R ↠ R/Il+1. By Proposition 4.12, the map fl is finite of degree at most |G|2l. The tuple da,i,j

corresponds to a ring homomorphism d : R•
l ! κ (induced by D

(ij)
a 7! da,i,j), and thus to a

maximal ideal m ⊆ R•
l (namely m := ker(d)) whose residue field is a subfield of κ (the image

of d). We have:∣∣∣∣{D ∈ g⊗D
∣∣∣∣ D(ij)

a = da,i,j for all (a, i, j) ∈ Ω•
l

lastjump(D) < l + 1

}∣∣∣∣
= |{D : R/Il+1 ! κ | D ◦ fl = d}| by definition of Il+1

=

∣∣∣∣{n maximal ideal of R/Il+1

∣∣∣∣ f−1
l (n) = m

(R/Il+1)/n ⊆ κ

}∣∣∣∣
≤ rankR•

l
R/Il+1 by Lemma 4.14 below

≤ |G|2l by Proposition 4.12. □

In the proof, we have used the following lemma:

Lemma 4.14. Let f : A ! B be a finite ring homomorphism, and let m be a maximal ideal
of A. Then, the number of maximal ideals of B containing f(m) is at most rankAB.

Proof. Replacing A by A/m and B by B ⊗A A/m (this may only decrease the rank of B), we
may assume that A is a field and that m = 0. Since B is finite over the field A, it is Artinian
and hence has finitely many maximal ideals. We want to show that B has at most dimAB
maximal ideals. The Chinese remainder theorem gives an isomorphism:⊕

n⊆B maximal

B/n ≃ B/J(B)

where J(B) is the Jacobson radical of B. We have:

|{n ⊆ B maximal}| ≤
∑

n⊆B maximal

dimA(B/n) = dimA(B/J(B)) ≤ dimAB. □

Proving Theorem 4.2 (d). We now assume that g[p] is non-abelian.

Proof of Theorem 4.2 (d)(i). Let l ≥ p. For any x, y ∈ g[p2], we have [px, py] = [p2x, y] = 0, so
p·g[p2] is an abelian subalgebra of g[p]. Since g[p] is non-abelian, the subalgebra p·g[p2] is strictly
contained in g[p], which implies that some exponent ni in the decomposition g ≃

∏
i Z/pniZ
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equals 1. Since l ≥ p, we have µl+1(1) ≥ 2. Therefore, the inequality in Equation (4.4) is strict:
we have |Ω•

l+1| ≤ rl − 1, and Corollary 4.13 gives the desired bound. □

Proof of Theorem 4.2 (d)(ii). Let l ∈ {1, . . . , p− 1}. We apply Corollary 4.3 with v = l+ lp−1.
For b ̸= l, Equations (4.1) and (4.2) are identical to the equations obtained for v = l + 1,
which were analyzed above. For b = l, Equation (4.1) says that pσ(Dl) = 0 (the sum is empty
because a1, a2 < v implies that a1 + a2 ≤ 2l < lp), so Dl ∈ g[p] ⊗ κ. Equation (4.3) says that
[σ(Dl), Dl] = 0 (only i = 1 is possible).

To restrict the possibilities for Dl, we look for an upper bound on the number of elements of
x ∈ g[p]⊗ κ satisfying [σ(x), x] = 0. For x, y ∈ g[p]⊗ κ, we can interpret [x, y] = 0 as a system
of bilinear polynomial equations in the r coordinates xi, yi ∈ κ of x and y. By assumption, the
Lie Fp-algebra g[p] is non-abelian, so one of these polynomial equations is non-trivial. Consider
any non-zero monomial cxiyj in this equation. Substituting x = σ(y), the resulting polynomial
equation (in the r variables yi) has a non-zero monomial cypi yj , so in particular the closed
subvariety (of r-dimensional affine space) cut out by the equation [σ(y), y] has dimension at
most r − 1. By [LW54, Lemma 1], the number of solutions Dl ∈ g[p] ⊗ κ to [σ(Dl), Dl] = 0 is
then O(|κ|r−1) (where the implied constant depends only on g[p]).

Consider one such solution Dl ∈ g[p]⊗κ. For the other elements Db ∈ g⊗W (κ) (with b ̸= l),
we reason exactly like in the proof of Theorem 4.2 (c), using Corollary 4.13. The analogue of Ω•

l
is now given by the set {(a, i, j) ∈ Ω | a ̸= l and ni − µl+1(a) ≤ j} which has cardinality:∑

a̸=l
a∈N\pN

r∑
i=1

min(ni, µl+1(a)) ≤ r
∑
a̸=l

a∈N\pN

µl+1(a) = r
(
l − µl+1(l)︸ ︷︷ ︸

=1

)
= r(l − 1).

Finally, we obtain the desired bound on the total number of solutions:∣∣{D ∈ g⊗D
∣∣ lastjump(D) < l(1 + p−1)

}∣∣ = O
(

|κ|r−1︸ ︷︷ ︸
choices of Dl

· El+lp−1−1|κ|r(l−1)︸ ︷︷ ︸
choices of (Db)b̸=l once Dl is fixed

)
= O

(
El|κ|rl−1

)
. □

Refinement of the value of E. Finally, we note that the bound of Theorem 4.2 (points (c)
and (d)) can sometimes2 be refined:

Proposition 4.15. Assume that there is a Lie subalgebra n ⊆ Z(g) containing [g, g] such that,
for all n ≥ 1:

n ∩ png = pnn. (4.6)

Then, for all integers l ≥ 0, we have Theorem 4.2 (c) with E = 1:

|{D ∈ g⊗D | lastjump(D) < l + 1}| ≤ |κ|rl.

Equation (4.6) is automatically satisfied for n ≥ maxi ni. In particular, the proposition
applies automatically (for example, taking n = Z(g)) when g = g[p] is of exponent p. (This case
will be discussed again in Subsection 6.2.) It also applies if g is abelian, taking n = g.

Proof. Modulo n⊗W (κ), Equation (3.3) becomes pµl+1(b)D̄b = 0 for all b (as n contains [g, g]).

First choose D̄b ∈ (g/n)[pµl+1(b)] ⊗W (κ) for all b. An upper bound for the number of choices
for D̄b is: ∏

b∈N\pN

∣∣∣(g/n)[pµl+1(b)]⊗W (κ)
∣∣∣.

Having determined Db modulo n⊗W (κ) for all b (and hence modulo Z(g)⊗W (κ)), it follows

from Equation (3.3) that pµl+1(b)Db is determined for all b. Hence, Db is determined modulo

2We did not manage to find any Lie algebra for which the inequality does not hold with E = 1.
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(g[pµl+1(b)] ∩ n) ⊗ W (κ) = n[pµl+1(b)] ⊗ W (κ). An upper bound for the number of remaining
choices for Db (once D̄b is fixed for all b) is:∏

b∈N\pN

∣∣∣n[pµl+1(b)]⊗W (κ)
∣∣∣.

Note the exact sequence (for any n ≥ 0):

0! g[pn]/n[pn]! (g/n)[pn]
×pn
! (n ∩ png)/pnn! 0.

By hypothesis, the quotient (n∩ png)/pnn is trivial, so that (g/n)[pn] = g[pn]/n[pn]. Therefore,
the total number of choices for Db is bounded above by:∏

b∈N\pN

∣∣∣(g[pµl+1(b)]/n[pµl+1(b)])⊗W (κ)
∣∣∣ · ∣∣∣n[pµl+1(b)]⊗W (κ)

∣∣∣ = ∏
b∈N\pN

∣∣∣g[pµl+1(b)]⊗W (κ)
∣∣∣

= |κ|
∑

logp |g[pµl+1(b)]|.

It remains only to estimate the exponent, using the inequalities |g[pk]| ≤ |g[p]|k for k ≥ 0:∑
b∈N\pN

logp |g[pµl+1(b)]| ≤
∑

b∈N\pN

rµl+1(b) ==
Lemma 3.8

rl. □

5. Global asymptotics

We fix a rational function field F := Fq(T ) of characteristic p and a finite Lie Zp-algebra
g ̸= 0 of nilpotency class at most 2. Let G := (g, ◦) be the corresponding p-group. For each
place P of F = Fq(T ), we make the following definitions:

• FP is the completion of F at P , κP is its residue field, and πP is a uniformizer of FP , so
that FP = κP ((πP )). Note that |κP | = qdeg(P ) is the absolute norm of the prime P ;

• π̃P = (πP , 0, 0, . . .) is the Teichmüller representative of πP in W (FP ) ⊆ W (F perf
P ).

• The following objects are defined exactly as in Section 3 in the case (F, π) = (FP , πP ),
adding a subscript P to the notation:

– The W (κP )-submodules D0
P and DP of W (FP ) ⊆ W (F perf

P ) (cf. Definitions 3.2
and 3.14)

– The maps α0
P : g⊗W (F perf

P )//
W (Fperf

P )

∼
! g⊗D0

P//W (κP ) (cf. Theorem 3.6) and αP : g⊗

W (F perf
P )//

W (Fperf
P )

↠ g⊗DP//W (κP ) (cf. Definition 3.18).

We also use the notation lastjump(D) if D ∈ g⊗D0
P (cf. Definition 3.7) or if D ∈ g⊗DP

(cf. Definition 3.24).

This section is organized as follows: In Subsection 5.1, we prove the local–global principle
(Theorem 1.1). Then, in Subsection 5.2, we establish a general analytic lemma (Lemma 5.4),
which lets one deduce global asymptotics from local estimates when combined with the local–
global principle. Finally, we prove our main counting result (Theorem 1.2) in Subsection 5.3.
Note that Theorem 1.1 and Lemma 5.4 are also used in Section 6 to prove Theorem 6.7.

5.1. Local–global principle. Before proving Theorem 1.1, we introduce some notation. At

each place P , the inclusion F ↪! FP induces a map g⊗W (F perf)//W (Fperf) ! g⊗W (F perf
P )//

W (Fperf
P )

,

corresponding to the natural map H1(ΓF , G)! H1(ΓFP
, G) (see Remark 2.22 (b)). Combining

this map with the maps αP : g⊗W (F perf
P )//

W (Fperf
P )
! g⊗DP//W (κP ) for all places P , we define

a map g⊗W (F perf)//W (Fperf) !
∏

P g⊗DP//W (κP ).

Consider an element [m] ∈ g ⊗W (F perf)//W (Fperf), and let K be the associated G-extension

of F . For all but finitely many places P of F , the extension K|F is unramified, so the cor-

responding element of g ⊗ W (F perf
P )//

W (Fperf
P )

(the (g ⊗ W (F perf
P ), ◦)-orbit of m) is mapped by
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αP : g⊗W (F perf
P )//

W (Fperf
P )
! g⊗DP//W (κP ) to the trivial orbit {0} (see Lemma 4.5). We have

thus described a map

α : g⊗W (F perf)//W (Fperf) −!
∏
P

′ g⊗DP//W (κP ), (5.1)

where the restricted product
∏′

P g⊗DP//W (κP ) is the following subset of
∏

P g⊗DP//W (κP ):∏
P

′ g⊗DP//W (κP ) :=
{(

[DP ]
)
P place of F

∣∣∣ [DP ] = {0} for all but finitely many places P
}
.

Lemma 5.1. For every ([DP ]) ∈
∏′

P g⊗DP//W (κP ), we have:∑
[γ]∈H1(ΓF ,G):

α(orb([γ]))=([DP ])

1

|StabG(γ)|
=
∏
P

|[DP ]|, (5.2)

where |[DP ]| denotes the size of the (g⊗W (κP ), ◦)-orbit of DP .

Proof. We first prove the claim in the case g = Z/pZ, where G = Z/pZ. In this case, the
orbits [DP ] all have size 1 by Proposition 3.16 (ii). Let OP = κP JπP K be the ring of integers
of FP . We have the following exact sequence, which is established in [Pot24, Corollary 5.3]:

0 −! Fq/℘(Fq) −! F/℘(F )
α
−!

⊕
P

FP /(OP + ℘(FP )) −! 0. (5.3)

Here, we have identified the surjection F/℘(F ) !
⊕

P FP /(OP + ℘(FP )) with the map α of
Equation (5.1) as follows:

• On the one hand, we have an identification

F/℘(F ) ≃
Lemma 2.9

F perf/℘(F perf) = g⊗W (F perf)//W (Fperf).

• On the other hand, we have identifications:

FP /℘(FP ) ≃
Lemma 2.9

F perf
P /℘(F perf

P ) = g⊗W (F perf
P )//

W (Fperf
P )

≃
Theorem 3.6

g⊗D0
P//W (κP ).

Recall that g⊗D0
P = D0

P /pD0
P =

⊕
a∈{0}∪N\pN κPπ

−a
P , so g⊗D0

P//W (κP ) = (D0
P /pD0

P )/℘(κP ).

Similarly, g⊗DP =
⊕

a∈N\pN κPπ
−a
P = g⊗D0

P /κP . As OP ∩ (D0
P /pD0

P ) = κP , we obtain

an identification
FP /(OP + ℘(FP )) ≃ g⊗DP//W (κP ).

Assembling the identifications FP /(OP + ℘(FP )) ≃ g⊗DP//W (κP ) for all places P yields

the desired identification
⊕

P FP /(OP + ℘(FP )) ≃
∏′

P g⊗DP//W (κP ).
Using the exact sequence (5.3), one sees that there are exactly |Fq/℘(Fq)| = p cosets [m] ∈
F/℘(F ) with α([m]) = ([DP ]). Since orb : H1(ΓF , G) ! F/℘(F ) is a bijection, there are
exactly p classes [γ] ∈ H1(ΓF , G) with α(orb([γ])) = ([DP ]) for all places P . Since G is abelian,
each of them has stabilizer StabG(γ) = G of size p. The claim then follows:∑

[γ]∈H1(ΓF ,G):
α(orb([γ]))=([DP ])

1

|StabG(γ)|
= p · 1

p
= 1 =

∏
P

|[DP ]|.

We now treat the case of a general Lie algebra g. Let A be the left-hand side of Equation (5.2).
By the orbit-stabilizer theorem, we have:

A =
1

|G|

∣∣∣{γ ∈ Hom(ΓF , G)
∣∣∣ α(orb([γ])) = ([DP ])

}∣∣∣.
We show that A =

∏
P |[DP ]| by induction over the size of the non-zero finite Lie algebra g.

Pick any Lie subalgebra n ⊆ Z(g) isomorphic to Z/pZ, and let N := (n, ◦) be the corresponding
subgroup of Z(G). We denote the corresponding projection maps (modulo n⊗DP or N) by π.
Since DP is a flat Zp-module, we have an exact sequence

0! n⊗DP ! g⊗DP
π
! (g/n)⊗DP ! 0.
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We can write

A =
1

|G/N |
∑

ε∈Hom(ΓF ,G/N):
α(orb([ε]))=([π(DP )])

a(ε)

where we have defined

a(ε) :=
1

|N |

∣∣∣{γ ∈ Hom(ΓF , G)
∣∣∣ π ◦ γ = ε and α(orb([γ])) = ([DP ])

}∣∣∣.
Let ε ∈ Hom(ΓF , G/N) be such that α(orb([ε])) = ([π(DP )]). The surjectivity of the nat-

ural map g ⊗ W (F perf)//W (Fperf) ! (g/n) ⊗ W (F perf)//W (Fperf) implies the surjectivity of the

corresponding map H1(ΓF , G) ! H1(ΓF , G/N) (cf. Proposition 2.21 (a)), and therefore of
Hom(ΓF , G) ! Hom(ΓF , G/N). (This reflects the fact that there is no obstruction to the em-
bedding problem for G ↠ G/N .) Thus, we can pick an arbitrary preimage γ0 ∈ Hom(ΓF , G)
such that π ◦ γ0 = ε. The entire fiber {γ ∈ Hom(ΓF , G) | π ◦ γ = ε} can then be described as
the set of twists γ0 · δ with δ ∈ Hom(ΓF , N) (cf. Remark 2.3). We therefore have:

a(ε) =
1

|N |

∣∣∣{δ ∈ Hom(ΓF , N)
∣∣∣ α(orb([γ0 · δ])) = ([DP ])

}∣∣∣.
Since α(orb([ε])) = ([π(DP )]) and γ0 lifts ε, we have α(orb([γ0])) = ([UP ]) ∈

∏′
P g⊗DP//W (κP )

for some UP ∈ g ⊗ DP with π(UP ) = π(DP ). If, for a given δ ∈ Hom(ΓF , N), we write
α(orb([δ])) = ([VP ]) ∈

∏′
P n⊗DP//W (κP ), then α(orb([γ0 ·δ])) = ([UP +VP ]) ∈

∏′
P g⊗DP//W (κP )

by Lemma 2.24 and Lemma 3.19. We obtain

a(ε) =
∑

([VP ])∈
∏′

P n⊗DP//W (κP ):

([UP+VP ])=([DP ])

1

|N |

∣∣∣{δ ∈ Hom(ΓF , N)
∣∣∣ α(orb([δ])) = ([VP ])

}∣∣∣︸ ︷︷ ︸
=1 by the base case, as n≃Z/pZ

=

∣∣∣∣∣
{
([VP ]) ∈

∏
P

′ n⊗DP//W (κP )

∣∣∣∣∣ ([UP + VP ]) = ([DP ])

}∣∣∣∣∣
=
∏
P

∣∣∣{VP ∈ n⊗DP

∣∣∣ UP + VP ∈ [DP ]
}∣∣∣ by Proposition 3.16 (ii)

=
∏
P

|{x ∈ [DP ] | x− UP ∈ n⊗DP }| by the change of variables x = UP + VP

=
∏
P

|{x ∈ [DP ] | π(x) = π(UP )}|

The number of such x is the size of the fiber of the map π : [DP ] ! [π(DP )], x 7! π(x)
above π(UP ) = π(DP ). All the fibers of that map have the same size since [DP ] is a single
(g⊗W (κP ), ◦)-orbit. Hence:

a(ε) =
∏
P

|[DP ]|
|[π(DP )]|

.

In particular, a(ε) does not depend on ε. We can finally conclude:

A =
1

|G/N |

∣∣∣{ε ∈ Hom(ΓF , G/N)
∣∣∣ α(orb([ε])) = ([π(DP )])

}∣∣∣︸ ︷︷ ︸
=
∏

P |[π(DP )]| by the induction hypothesis

·
∏
P

|[DP ]|
|[π(DP )]|

=
∏
P

|[DP ]|. □

The local–global principle for the last jump (Theorem 1.1) follows readily from Lemma 5.1:

Theorem 5.2 (Local–global principle). Pick rational numbers NP ∈ Q≥0 for every place P of
F = Fq(T ), so that NP = 0 for all but finitely many places P . Then,∑

K∈ÉtExt(G,F ):
∀P, lastjumpP (K)=NP

1

|Aut(K)|
=
∏
P

∑
KP∈ÉtExt(G,FP ):
lastjump(KP )=NP

1

|Aut(KP )|
.
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Proof. Using the bijection ÉtExt(G,F )
∼
! H1(ΓF , G) from Lemma 2.1 and the fact that

lastjumpP (K) = lastjump(DP ) if K corresponds to [γ] and αP (orb([γ])) = [DP ] (cf. Defini-
tions 2.23, 3.7 and 3.24), we have:∑

K∈ÉtExt(G,F ):
∀P, lastjumpP (K)=NP

1

|Aut(K)|
=

∑
([DP ])∈

∏′
P g⊗DP//W (κP ):

∀P, lastjump([DP ])=NP

∑
[γ]∈H1(ΓF ,G):

α(orb([γ]))=([DP ])

1

|StabG(γ)|

By Lemma 5.1, the inner sum equals
∏

P |[DP ]|. Therefore:∑
K∈ÉtExt(G,F ):

∀P : lastjumpP (K)=NP

1

|Aut(K)|
=
∏
P

|{DP ∈ g⊗DP | lastjump(DP ) = NP }|

=
∏
P

∑
KP∈ÉtExt(G,FP ):
lastjump(KP )=NP

1

|Aut(KP )|
by Lemma 4.1. □

Remark 5.3. In the proof of the local–global principle, we crucially made use of the fact that,
for any D ∈ g ⊗ D0, the number lastjump(D) is completely determined by the projection
pr(D) ∈ g⊗D. (See Corollary 3.23.) Our method of proof does not imply a similar local–global
principle for the discriminant, as the discriminant in general cannot be determined from pr(D).
For the same reason, our method of proof fails for groups of nilpotency class larger than 2.

5.2. Analytic lemma. We now prove a general analytic lemma that allows us to combine local
estimates into global asymptotics when there is a local–global principle. We write the lemma
and its proof in such a way that it is valid for any function field F of characteristic p with field
of constants Fq, without having to assume that F = Fq(T ).

Lemma 5.4. Let K ≥ 1 be an integer. For every place P of F and every n ∈ 1
KZ≥0, let

aP,n ∈ R≥0, with aP,0 = 1. For every n ∈ 1
KZ>0, let bn ∈ Z≥0 and en, kn ∈ R be such that for

all places P , we have

aP,n = bn|κP |en +O(|κP |kn),
where the implied constant factor in the O-estimate depends neither on the place P nor on the
number n. Assume that bn = 0 for all but finitely many numbers n, but bn ̸= 0 for at least one
number n. Now, define

A := max
{
en+1
n | n ∈ 1

KZ>0 with bn ̸= 0
}

and assume that

sup{kn+1
n | n ∈ 1

KZ>0} < A. (5.4)

Let

S := {n ∈ 1
KZ>0 | bn ̸= 0 and A = en+1

n },
define

B :=
∑
n∈S

bn, (5.5)

and let M ∈ 1
KZ>0 be the least common integer multiple of the numbers n ∈ S, so that MZ =⋂

n∈S nZ. Finally, define:

aN :=
∑

(nP )P∈
∏

P
1
K
Z≥0:∑

P nP deg(P )=N

∏
P

aP,nP
.

Then, there is a function C : Q/MZ ! R≥0 with C(0) > 0, such that for rational N going to
infinity, we have

aN = C(N mod M) · qANNB−1 + o(qANNB−1).
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Proof. Rescaling by a factor of K, we can assume without loss of generality that K = 1. We
then only need to consider integers N since aN = 0 for N /∈ Z≥0. Moreover, we can assume
without loss of generality that bn = 0 for all n /∈ S. (For the finitely many n ̸∈ S with bn ̸= 0,
replace bn by 0 and kn by max(en, kn), and observe that Inequality (5.4) still holds.) Let

δ := A − sup{kn+1
n | n ∈ Z>0} > 0. By definition of the numbers aN , the generating function

f(X) :=
∑

N≥0 aNXN factors as an Euler product

f(X) =
∏
P

fP (X
deg(P )), where fP (X) :=

∑
n≥0

aP,nX
n.

We estimate the local factor at a place P , for a complex number X:

fP (|κP |−AX) = 1 +
∑
n≥1

aP,n|κP |−AnXn

= 1 +
∑
n∈S

bn|κP |en−AnXn +
∑
n≥1

O(|κP |kn−AnXn)

= 1 +
∑
n∈S

bn|κP |−1Xn +
∑
n≥1

O(|κP |−1−δnXn).

Recall that the constant in the O-estimate is independent of both n and P . We obtain:

fP (|κP |−AX) = 1 +
∑
n∈S

bn|κP |−1Xn +O

∑
n≥1

|κP |−1−δnXn


= 1 + |κP |−1

∑
n∈S

bnX
n + |κP |−1−δX · O

∑
n≥0

(
|κP |−δX

)n
For |X| < |κP |δ/2, we have |κP |−δ|X| ≤ |κP |−δ/2 ≤ q−δ/2, and then∣∣∣∣∣∣

∑
n≥0

(
|κP |−δX

)n∣∣∣∣∣∣ ≤
∑
n≥0

q−nδ/2 =
1

1− q−δ/2
,

which means that the O-factor is bounded by a constant independent of P . Note also that
|κP |−1−δ|X| ≤ |κP |−1−δ/2. We have obtained the estimate

fP (|κP |−AX) = 1 + |κP |−1
∑
n∈S

bnX
n +O(|κP |−1−δ/2),

which implies, under the additional assumption that |X| < |κP |1/3n for all n ∈ S, that

fP (|κP |−AX)
∏
n∈S

(
1− |κP |−1Xn

)bn
= 1 +O(|κP |−1−ε)

for ε := min(13 ,
δ
2). Let δ

′ := min
({

δ
2

}
∪
{

1
3n | n ∈ S

})
. For |X| < qδ

′
, we obtain

f(q−AX) =
∏
P

fP

(
|κP |−AXdeg(P )

)
=
∏
P

1 +O(|κP |−1−ε)∏
n∈S

(
1− (q−1Xn)deg(P )

)bn . (5.6)

The product of the numerators is absolutely convergent and hence defines a holomorphic func-
tion for |X| < qδ

′
. Moreover, that product does not vanish for X = 1 as none of the factors

fP (|κP |−A) = 1 +
∑

n≥1 aP,n|κP |−An ≥ 1 vanish (the coefficients aP,n are non-negative). The
Hasse–Weil zeta function

ZF (X) =
∏
P

1

1−Xdeg(P )
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is holomorphic for |X| ≤ 1
q except for a simple pole at X = 1

q . Using this function, Equa-

tion (5.6), rewrites as

f(q−AX) =
∏
P

(
1 +O(|κP |−1−ε)

)
︸ ︷︷ ︸
holomorphic for |X| < qδ

′

non-vanishing at X = 1

·
∏
n∈S

ZF (q
−1Xn)bn .︸ ︷︷ ︸

holomorphic for |X| ≤ 1, except for
poles of order bn at n-th roots of 1

Thus, the function f(q−AX)
∏

n∈S(1−Xn)bn is holomorphic for |X| ≤ 1 and non-vanishing at

X = 1. It follows that f(X) is holomorphic for |X| ≤ q−A except for poles of order at most B
at q−A, q−A · ζ, . . . , q−A · ζM−1 for the M -th roots of unity 1, ζ, . . . , ζM−1, and the pole at q−A

has order exactly B. By [FS09, Theorem IV.10], this implies that

aN =
M−1∑
i=0

Di(q
−Aζi)−NNB−1 + o(qANNB−1)

for some constants D0, . . . , DM−1, with D0 ̸= 0. We conclude that

aN = C(N)qANNB−1 + o(qANNB−1),

where C(N) :=
∑M−1

i=0 Diζ
−iN only depends on the remainder of N modulo M . Since D0 ̸= 0,

we have C(N) ̸= 0 for some N . Since aN ≥ 0 for all N , we have C(N) ≥ 0 for all N .

We show C(0) > 0 as follows: Let ν be the greatest common divisor of the numbers n ∈ S.
Let L ≥ 0 be large enough so that every residue class modulo M which is divisible by ν can be
written as the sum of at most L (not necessarily distinct) elements of S.

Inequality (5.4) implies en > kn for n ∈ S, so aP,n > 0 for all but finitely many places P . By
the Weil bound, for any sufficiently large integer d, there is a place of degree d. In particular,
there are infinitely many places with deg(P ) ≡ 1 mod M . Pick any L places Q1, . . . , QL with
deg(Qi) ≡ 1 mod M and aQi,n > 0 for all n ∈ S, and let Ω be the set of remaining places
P ̸= Q1, . . . , QL. Restricting to places in Ω and elements nP of S, define

a′N :=
∑

(nP )P∈
∏

P∈Ω S:∑
P∈Ω nP deg(P )=N

∏
P∈Ω

aP,nP
.

We have a′N = C ′(N mod M) · qANNB−1+ o(qANNB−1) by the same argument as above, again
with C ′(r) > 0 for some residue class r modulo M . By definition, a′N = 0 unless N is a sum of
elements of S, and hence divisible by ν. Thus, C ′(r) > 0 implies that r is divisible by ν. Now,
write −r ≡ nQ1 + · · ·+ nQL

mod M with nQ1 , . . . , nQL
∈ {0} ∪ S. The inequality

anQ1
deg(Q1)+···+nQL

deg(QL)+N ≥ aQ1,n1 · · · aQL,nL
a′N

for N ≡ r mod M implies that C(0) ≥ aQ1,n1 · · · aQL,nL
C ′(r) > 0. □

Remark 5.5. Note the similarities between our Equations (5.4) and (5.5) and [DY25, Equa-
tions (8.1) and (8.2)]. In that regard, our local–global principle (Theorem 5.2) seems to be
compatible with Darda and Yasuda’s “Main Speculation”.

5.3. Main counting result.

Theorem 5.6. Let

r := logp |G[p]| and M :=

{
1 if G[p] is abelian,

1 + p−1 otherwise.

If G[p] is non-abelian, assume that |G[p]| ≤ pp−1. Assume moreover that q is a large enough
power of p (depending on the group G). Then, there is a function C : Q/MZ ! R≥0 with
C(0) ̸= 0, such that for rational N !∞, we have∑

K∈ÉtExt(G,F ):
lastjump(K)=N

1

|Aut(K)|
= C(N mod M) · q

r+1
M

·N + o
(
q

r+1
M

·N
)
.
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Proof. For every N ∈ Q≥0, define:

aN :=
∑

K∈ÉtExt(G,F ):
lastjump(K)=N

1

Aut(K)
.

Combining Equation (1.1), Theorem 5.2, and Lemma 4.1, we see that

aN =
∑

(nP )P∈
∏

P
1
|g|Z≥0:∑

P nP deg(P )=N

∏
P

aP,nP
where aP,n := |{D ∈ g⊗DP | lastjump(D) = n}| .

Our goal is now to use Lemma 5.4 (with K = |g|) in order to obtain estimates for aN . For this,
we use the following estimates arising from Theorem 4.2:

If g[p] is non-abelian, then:

aP,n = 1 for n = 0,

aP,n = 0 for 0 < n < 1,

aP,n = |κP |r +O(|κP |r−1) for n = 1 + p−1,

aP,n = 0 for 1 + p−1 < n < 2,

aP,n = O(El|κP |lr−1) for l ≤ n < l + lp−1 with l = 1, . . . , p− 1,

aP,n = O(El|κP |lr−1) for l ≤ n < l + 1 with l = p, p+ 1, . . . ,

aP,n = O(El|κP |lr) for l + lp−1 ≤ n < l + 1 with l = 2, . . . , p− 1.

If g[p] is abelian, then:

aP,n = 1 for n = 0,

aP,n = 0 for 0 < n < 1,

aP,n = |κP |r +O(1) for n = 1,

aP,n = 0 for 1 < n < 2,

aP,n = O(El|κP |lr) for l ≤ n < l + 1 with l = 2, 3, . . . .

We now fix a real ε > 0 satisfying ε < 1
2 and, if g[p] is non-abelian (in which case we have

assumed r ≤ p − 1), also satisfying ε < p−r
p+1 . We assume that q ≥ E1/ε, so that E ≤ |κP |ε for

all places P (note that any q works if E = 1).
If g[p] is non-abelian: The estimates above show that we can take the following values

of bn, en, kn in order to apply Lemma 5.4:

n
0 < n < 1

or 1 + p−1 < n < 2
1 + p−1 l + lp−1 ≤ n < l + 1

with 2 ≤ l < p
l ≤ n < l + lp−1 with 1 ≤ l < p
or l ≤ n < l + 1 with l ≥ p

bn 0 1 0 0
en 0 r 0 0
kn −∞ r − 1 lε+ lr lε+ lr − 1

In the notation of Lemma 5.4, we have S = {1 + p−1}, A = r+1
1+p−1 , B = 1 and M = 1 + p−1.

We verify Inequality (5.4):

lε+ lr + 1

l + lp−1
≤ ε+ r + 1/2

1 + p−1
<

r + 1

1 + p−1
= A for 2 ≤ l < p,

lε+ lr

l
= ε+ r <

p− r

p+ 1
+ r =

r + 1

1 + p−1
= A for l ≥ 1.
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If g[p] is abelian: The estimates above show that we can take the following values of bn, en, kn
in order to apply Lemma 5.4:

n 0 < n < 1 1 1 < n < 2 l ≤ n < l + 1 with l ≥ 2
bn 0 1 0 0
en 0 r 0 0
kn −∞ 0 −∞ lε+ lr

We have S = {1}, A = r + 1, B = 1 and M = 1. We verify Inequality (5.4):

lε+ lr + 1

l
≤ ε+ r +

1

2
< r + 1 = A for l ≥ 2. □

6. Groups of exponent p: the example of Heisenberg groups

When g has exponent p, our main result (Theorem 1.2) only applies to finitely many p-
groups due to the assumption that |g| = |g[p]| ≤ pp−1. To illustrate how this restriction may
be overcome, we are going to deal with the infinite family of Heisenberg groups Hk(Fp) of
exponent p.

The section is organized as follows: in Subsections 6.1 and 6.2, we review the simpler form
taken by nilpotent Artin–Schreier theory and by the equations of Definition 3.9 when focusing
on groups of exponent p. In particular, we show how a stronger version of Corollary 4.13 follows
immediately from the equations (Proposition 6.2). We then introduce generalized Heisenberg
groups in Subsection 6.3, we obtain estimates for the number of elements of Hk(Fq) which
commute with (part of) their Frobenius orbit in Subsection 6.4, and we use these estimates to
obtain asymptotics for the number of Hk(Fp)-extensions of function fields in Subsections 6.5
and 6.6, proving our main theorem (Theorem 6.7, which is Theorem 1.3).

6.1. Nilpotent Artin–Schreier theory in exponent p. When we focus only on p-groups G
of exponent p and of nilpotency class at most 2 (corresponding to a Lie Fp-algebra g), we do
not need Witt vectors at all, as we shall briefly explain.

Let g ̸= 0 be a finite Lie Fp-algebra of nilpotency class ≤ 2. For every field of characteristic p,

we have a bijection orb: H1(ΓF , G)
∼
! g ⊗ F//F , where g ⊗ F//F is the set of orbits of g ⊗Fp F

under the (g ⊗ F, ◦)-action given by g.m := σ(g) ◦ m ◦ (−g). In other words, compared to
previous sections, we can ignore every coordinate of every Witt vector besides the first, and we
do not need to take the perfect closure of the base field (see Lemma 2.9). All proofs are similar
to the proofs of Section 2, but are largely simplified.

When we have fixed a finite field κ, we let D0 (resp. D) be the κ-linear subspace of κ((π))
spanned by the elements π−a for a ∈ {0} ∪ N \ pN (resp. for a ∈ N \ pN). Then, the obvious
analogues of all results from Section 3 hold, with simplified proofs. In particular, we have a
bijection α0 : g⊗ F//F

∼
! g⊗D0//κ and a |g⊗ κ|-to-one surjection α : g⊗ F//F

∼
! g⊗D//κ.

6.2. The distribution of last jumps in exponent p. Let as above g be a non-zero finite
Lie Fp-algebra of nilpotency class ≤ 2 and let r := dimFp g. By Theorem 3.20, the condition
that an element D ∈ g ⊗ D satisfies lastjump(D) < v is equivalent to the equations given in
Definition 3.9. Moreover, in this setting, these equations take a much simpler form:
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Corollary 6.1. Consider an element D ∈ g⊗D, written as D =
∑

b∈N\pNDbπ
−b with Db ∈ g⊗κ.

Then, D satisfies lastjump(D) < v if and only if the following equations hold, for all b ∈ N\pN:

Db = −(2b)−1
∑

a1,a2∈N\pN:
b=a1+a2,

a1<v, a2<v

a1[Da1 , Da2 ] if b ≥ v (6.1)

0 =
∑

a1,a2∈N\pN:
b=a1+a2

a1[Da1 , Da2 ] if b < v (6.2)

0 =
∑

a1,a2∈N\pN:
b=a1pi+a2,
a1<v, a2<v

a1[σ
i(Da1), Da2 ] for all i > 0 such that bp−i ≥ v. (6.3)

This simpler form of the equations can be used to directly obtain a stronger form of Corol-
lary 4.13/Proposition 4.15 when the exponent is p (with a much simpler proof):

Proposition 6.2. For all v > 0, we have the upper bound:

|{D ∈ g⊗D | lastjump(D) < v}| =
∣∣∣{(Da)p∤a<v ∈ (g⊗ κ)

⌈v⌉−⌈ v
p
⌉
∣∣∣ Equations (6.2) and (6.3) hold

}∣∣∣
≤ |g⊗ κ|⌈v⌉−⌈ v

p
⌉
= |κ|r

(
⌈v⌉−⌈ v

p
⌉
)
.

Proof. The elements Db for b ≥ v are uniquely expressed in terms of the elements Db for b < v
using Equation (6.1), and they never appear in Equations (6.2) and (6.3). This implies the first
equality. The following inequality is clear. □

In order to apply Lemma 5.4 without assuming that r is small, we need to better understand
the distribution of extensions with small last jump, and hence study the sets Am(κ) appearing
in Remark 4.7 (as g has exponent p, we have g[p] = g and g⊗Zp W (κ) = g⊗Fp κ). Since the sizes
of these sets heavily depend on the Lie algebra (we are essentially counting elements commuting
with their Frobenii), a unified statement for the asymptotics seems out of reach.3

6.3. Higher Heisenberg groups and their Lie algebras. Let p ̸= 2 and k ≥ 1. For us, the
Heisenberg group Hk(Fp) is the group defined by the following matrix representation4:

Hk(Fp) :=


1 a⃗t c

0 Ik b⃗
0 0 1

 ∈ GLk+2(Fp)

∣∣∣∣∣∣ a⃗, b⃗ ∈ Fk
p, c ∈ Fp

 . (6.4)

Equivalently, it is the unique group (up to isomorphism) with exponent p, center Z/pZ, nilpo-
tency class 2, and order p2k+1. We denote the corresponding Lie Fp-algebra by hk, which as an

Fp-vector space can be decomposed as Fp ⊕ (Fk
p)

2 (the Fp-factor is the center, corresponding to

the coefficient c, and the two Fk
p-factors correspond respectively to a⃗ and b⃗). The Lie bracket

of hk is determined by the induced map (hk/Z(hk))
2 ! Z(hk), which is a non-degenerate Fp-

bilinear alternating form fk : (Fk
p)

2 ! Fp. Concretely, if (⃗a, b⃗) and (⃗a′, b⃗′) are two elements

of (Fk
p)

2, one can check that

fk

(
(⃗a, b⃗), (a⃗′, b⃗′)

)
= a⃗ · b⃗′ − b⃗ · a⃗′ =

k∑
i=1

(aib
′
i − bia

′
i).

(In fact, fk is the only non-degenerate bilinear alternating form up to automorphisms of (Fk
p)

2.)

3The main dependence in the Lie algebra g certainly comes from its “commuting variety”, i.e., the subvariety
C ⊆ (Ar

Fp)
2 cut out by the equations corresponding to [x, y] = 0. Indeed, for example, in the case of A1(Fq),

we are counting Fq-points of the intersection of C with the graph of the Frobenius map. Interpreting this as an
intersection number, and using the Grothendieck–Lefschetz trace formula (following the methods of [SV21] or of
[HHYZ24]) might relate this number to the geometry of C.

4Be aware that this generalization of the Heisenberg group is distinct from the generalization considered in
[Mü22] (where the rank of the center is not always 1).
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6.4. Elements commuting with their Frobenii. For any finite field Fq of characteristic p

and any m ≥ 0, extend the bilinear form fk to F2k
q and define the set

Ak,m(Fq) :=
{
x ∈ F2k

q

∣∣∣ fk(σi(x), x) = 0 for i ∈ {1, . . . ,m}
}
. (6.5)

Clearly, Ak,0(Fq) ⊇ Ak,1(Fq) ⊇ Ak,2(Fq) ⊇ · · · . The definition of Ak,m(Fq) is motivated by its
appearance in Remark 4.7, which implies the following equality when the base field is Fq((π)):∣∣{D ∈ hk ⊗D

∣∣ lastjump(D) < 1 + p−m
}∣∣ = |Z(hk)⊗ Fq| · |Ak,m(Fq)|

= q · |Ak,m(Fq)|. (6.6)

We say that a subspace W of F2k
q is isotropic if fk(x, y) = 0 for all x, y ∈ W . Note that all

maximal isotropic subspaces of F2k
q are k-dimensional.

Lemma 6.3 (Large m). We have

Ak,m(Fq) =
⋃

W⊆F2k
p

isotropic

(W ⊗Fp Fq) for m ≥ k.

Proof.
(⊇) Let W ⊆ F2k

p be isotropic and let x ∈ W ⊗Fq. Then, σ
i(x) ∈ W ⊗Fq for all i ∈ Z. Hence,

fk(σ
i(x), x) = 0 for all i ∈ Z.

(⊆) Let x ∈ Ak,m(Fq). We consider the vector spaceW ′ over Fq generated by x, σ(x), . . . , σk(x).
By assumption, fk(σ

j(x), σi(x)) = σi(fk(σ
j−i(x), x)) = 0 for all 0 ≤ i < j ≤ k, so W ′ is

isotropic. The maximal isotropic subspaces of F2k
q are k-dimensional, so dimFq(W

′) ≤ k.

Hence, the k+1 vectors x, σ(x), . . . , σk(x) are linearly dependent over Fq, so σ(W ′) = W ′.
By Galois descent for vector spaces, W ′ = W ⊗ Fq for some isotropic Fp-subspace W =

(W ′)σ of F2k
p . The claim follows as x lies in W ′ = W ⊗ Fq. □

Lemma 6.4 (Counting maximal isotropic subspaces). There are exactly
∏k

i=1(p
i+1) maximal

(i.e., k-dimensional) isotropic subspaces of F2k
p .

Proof. We count tuples (b1, . . . , bk) of linearly independent vectors such that fk(bi, bj) = 0 for

all 1 ≤ i, j ≤ k. After choosing linearly independent vectors b1, . . . , bi, there are exactly p2k−i

vectors bi+1 such that fk(bi+1, bj) for j = 1, . . . , i, as the orthogonal complement of the i-
dimensional space ⟨b1, . . . , bi⟩ has dimension 2k − i. Exactly pi of these vectors bi+1 lie in
⟨b1, . . . , bi⟩, so that there are p2k−i−pi choices for bi+1. Hence, the number of tuples (b1, . . . , bk)
as above is

k−1∏
i=0

(p2k−i − pi) =

k−1∏
i=0

pi(p2(k−i) − 1).

Each maximal isotropic subspace W , being k-dimensional, has exactly

|GLk(Fp)| =
k−1∏
i=0

(pk − pi) =

k−1∏
i=0

pi(pk−i − 1)

bases (b1, . . . , bk). Hence, the number of maximal isotropic subspaces is

k−1∏
i=0

pi(p2(k−i) − 1)

pi(pk−i − 1)
=

k−1∏
i=0

(pk−i + 1) =

k∏
i=1

(pi + 1). □

Lemma 6.5 (Small m). We have |Ak,m(Fq)| = q2k−m +Ok(q
k) for 0 ≤ m < k.

Proof. We handle the conditions fk(σ
i(x), x) = 0 for i = 1, . . . ,m using the following sum over

the qm characters χ of the (additive) group Fm
q :

|Ak,m(Fq)| =
1

qm

∑
χ

∑
x∈(Fk

q )
2

χ
(
fk(σ(x), x), . . . , fk(σ

m(x), x)
)
.
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Writing x = (⃗a, b⃗) with a⃗, b⃗ ∈ Fk
q , we have by definition fk(σ

i(x), x) = σi(⃗a) · b⃗ − σi(⃗b) · a⃗ =∑k
j=1

(
σi(aj)bj−σi(bj)aj

)
. We can then factor the inner sum to obtain the following expression:

|Ak,m(Fq)| =
1

qm

∑
χ

 ∑
a,b∈Fq

χ
(
σ(a)b− σ(b)a, . . . , σm(a)b− σm(b)a

)k

.

Using the non-degenerate trace form (x, y) 7! TrFq |Fp
(xy), we can identify the characters χ

of Fm
q with vectors t ∈ Fm

q , so that

|Ak,m(Fq)| =
1

qm

∑
t∈Fm

q

F (t)k,

where

F (t) :=
∑

a,b∈Fq

ep

(
m∑
i=1

Tr
(
ti
(
σi(a)b− σi(b)a

)))
with ep(x mod p) := e2πix/p. For t = 0 (corresponding to the trivial character), we clearly have
F (0) = q2. For t ̸= 0, we split up the sum F (t) into sub-sums F (t, b) according to the choice of
b ∈ Fq. Clearly, F (t, 0) = q. For b ̸= 0, the substitution r := a/b shows

F (t, b) =
∑
r∈Fq

ep

(
m∑
i=1

Tr
(
tiσ

i(b)b ·
(
σi(r)− r

)))

=
∑
r∈Fq

ep

(
m∑
i=1

(
Tr
(
tiσ

i(b)bσi(r)
)
− Tr

(
tiσ

i(b)br
)))

=
∑
r∈Fq

ep

(
m∑
i=1

(
Tr
(
σ−i[tiσ

i(b)b]r
)
− Tr

(
tiσ

i(b)br
)))

as the trace is σ-invariant

=
∑
r∈Fq

ep

(
Tr
( m∑
i=1

(
σ−i[tiσ

i(b)b]− tiσ
i(b)b

)
· r
))

.

By orthogonality of characters of Fq and non-degeneracy of the trace form, we obtain

F (t, b) =

{
q if

∑m
i=1

(
σ−i[tiσ

i(b)b]− tiσ
i(b)b

)
= 0,

0 otherwise.

Applying the bijection σm to the condition
∑m

i=1

(
σ−i[tiσ

i(b)b]− tiσ
i(b)b

)
= 0 turns it into the

following polynomial equation in the variable b:

m∑
i=1

(
σm−i(ti)b

pm+pm−i − σm(ti)b
pm+i+pm

)
= 0.

For any fixed t ̸= 0, the left-hand side is a non-zero polynomial in b of degree at most p2m+pm.
Hence, for any t ̸= 0, there are at most p2m + pm = O(1) values b ∈ F×

q with F (t, b) ̸= 0;
as seen above, we have F (t, b) = q in this case. We conclude that F (t) =

∑
b∈Fq

F (t, b) =

q+
∑

b∈F×
q
F (t, b) = O(q) for all t ̸= 0. Combining this with the fact that F (0) = q2, we obtain

|Ak,m(Fq)| =
1

qm

(
q2k +O(qm+k)

)
= q2k−m +O(qk). □

6.5. Local counting. In this subsection, we fix a finite field κ, and we use the estimates of the
sizes of the sets Ak,m(κ) obtained in the previous subsection in order to estimate the distribution
of Hk(Fp)-extensions of the local function field κ((π)) (cf. Remark 4.7 and Lemma 4.1). More
precisely, we prove the following lemma, in the spirit of Theorem 4.2:
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Lemma 6.6. Consider the local field F = κ((π)). For any v ≥ 0, let N(= v), N(< v), N(≤ v)
be the number of D ∈ g⊗D such that lastjump(D) = v, lastjump(D) < v, or lastjump(D) ≤ v,
respectively. We have:

(a) N(= 0) = N(< 1) = 1.

(b) N(≤ 1) = N(< 1 + p−k) =
∏k

i=1(p
i + 1) · |κ|k+1 · (1 +Ok(|κ|−1)).

(c) N(≤ 1 + p−m−1) = N(< 1 + p−m) = |κ|2k+1−m · (1 +Ok(|κ|−1)) for 0 ≤ m < k.

(d) N(< l + 1) = Ok

(
|κ|(l−⌊l/p⌋)(2k+1)

)
for l ≥ 0.

(e) N(< l + p−m) = Ok

(
|κ|l(2k+1−m) + |κ|(l−1)(2k+1)+1

)
for 2 ≤ l < p and 1 ≤ m ≤ k.

(f) N(< l + lp−m) = Ok

(
|κ|l(2k+2−m)−1 + |κ|(l−1)(2k+1)+1

)
for 2 ≤ l < p and 1 ≤ m ≤ k.

Proof. Let π be the projection g = F2k
p ⊕ Fp ↠ F 2k

p .

(a) See Theorem 4.2 (a).
(b) Equation (6.6) implies that N(< 1 + p−m) = |κ| · |Ak,m(κ)|, which by Lemma 6.3 does

not depend on m as soon as m ≥ k. Therefore, N(≤ 1) = N(< 1+p−k) = |κ| · |Ak,k(κ)|.
The claim then follows using Lemmas 6.3 and 6.4.

(c) By Proposition 4.6 and Equation (6.6), we have N(≤ 1 + p−m−1) = N(< 1 + p−m) =
|κ| · |Ak,m(κ)|. The claim then follows using Lemma 6.5.

(d) See Proposition 6.2 (we have l + 1− ⌈ l+1
p ⌉ = l − ⌊ l

p⌋, and r = 2k + 1 in this case).

(e) By Corollary 4.4 and Proposition 4.9 (i), N(< l + p−m) is at most the number of
tuples (D1, . . . , Dl) of elements of g⊗ κ such that [σi(Dl), Da] = 0 for i = 1, . . . ,m and
a = 1, . . . , l. We will first pick Dl and then D1, . . . , Dl−1.

Let Vi(Dl) be the κ-span of σ(π(Dl)), . . . , σ
i(π(Dl)). If Vi(Dl) = Vi+1(Dl) for some i,

then Vi(Dl) is stable under σ and hence defined over Fp by Galois descent for vector
spaces; this implies that Vj(Dl) = Vi(Dl) for all j ≥ i. Let V (Dl) :=

⋃
i≥1 Vi(Dl),

which is defined over Fp for the same reason. Let d(Dl) := dim(V (Dl)). We then have
dim(Vi(Dl)) = min(i, d(Dl)).

The conditions [σi(Dl), Da] = 0 for i = 1, . . . ,m mean that π(Da) has to lie in the
orthogonal complement of Vm(Dl) with respect to the alternating bilinear form fk. This
orthogonal complement has dimension 2k − dim(Vm(Dl)) = 2k −min(m, d(Dl)), so the

number of valid Da is |κ|2k+1−min(m,d(Dl)) for a = 1, . . . , l − 1.
Focusing first on tuples (D1, . . . , Dl) with d(Dl) ≥ m, we bound the number of Dl

such that [σi(Dl), Dl] = 0 for i = 1, . . . ,m using Lemmas 6.3, 6.4 and 6.5: the number
of such Dl is Ok(|κ|2k+1−m), so the total number of valid tuples (D1, . . . , Dl) with

d(Dl) ≥ m is Ok(|κ|(l−1)(2k+1−m)+(2k+1−m)) = Ok(|κ|l(2k+1−m)).
Now, we fix some d < m and focus on the case d(Dl) = d. In this case, we will have

more choices forD1, . . . , Dl−1. However, we will have fewer choices forDl, as π(Dl) must
lie in the d-dimensional subspace V (Dl), which is defined over Fp. For any of the Ok(1)

d-dimensional subspaces V of κ2k defined over Fp, there are |κ|d+1 choices of Dl such

that π(Dl) ∈ V , so there are at most |κ|d+1 choices of Dl such that V (Dl) = V . Hence,

for any given dimension d, we have Ok(|κ|(l−1)(2k+1−d)+(d+1)) valid tuples (D1, . . . , Dl)
with d(Dl) = d. The exponent (l− 1)(2k+1− d) + (d+1) is maximal for d = 0. Thus,

the number of valid tuples (D1, . . . , Dl) with d(Dl) < m is Ok(|κ|(l−1)(2k+1)+1).
(f) By Corollary 4.4 and Proposition 4.9 (ii), N(< l+ lp−m) is at most the number of tuples

(D1, . . . , Dl) of elements of g ⊗ κ such that [σi(Dl), Da] = 0 for i = 1, . . . ,m − 1 and
a = 1, . . . , l−1 and such that [σi(Dl), Dl] = 0 for i = 1, . . . ,m. We distinguish the same
two types of tuples as before:

If d(Dl) ≥ m, then Vm−1(Dl) has dimension m − 1, and thus the number of valid

tuples with d(Dl) ≥ m is Ok(|κ|(l−1)(2k+1−(m−1))+(2k+1−m)) = Ok(|κ|l(2k+2−m)−1).
If d(Dl) < m, then Vm−1(Dl) = Vm(Dl), so the number of valid tuples with d(Dl) < m

is Ok(|κ|(l−1)(2k+1)+1) as before. □
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6.6. Global asymptotics. Define the following numbers:

n(m) := 1 + p−m−1, e′m := 2k + 1−m, b′m := 1 for 0 ≤ m ≤ k − 1,

n(k) := 1, e′k := k + 1, b′k :=
k∏

i=1

(pi + 1).

Define A := max{ e′m+1
n(m) | 0 ≤ m ≤ k} and S′ =

{
0 ≤ m ≤ k

∣∣∣ e′m+1
n(m) = A

}
. Let B :=

∑
m∈S′ b′m,

and let M be the least common integer multiple of the rational numbers b′m for m ∈ S′.

Theorem 6.7 (cf. Theorem 1.3). There is a function C : Q/MZ ! R≥0 with C(0) ̸= 0, such
that for rational N !∞, we have∑

K∈ÉtExt(Hk(Fp), F ):
lastjump(K)=N

1

|Aut(K)|
= C(N mod M) · qANNB−1 + o

(
qANNB−1

)
.

Proof. We apply Lemma 5.4 just as in Subsection 5.3 (in the proof of Theorem 1.2), and with
the same notation, but using the following estimates arising from Lemma 6.6:

aP,n = 1 for n = 0,

aP,n = 0 for 0 < n < 1,

aP,n =
k∏

i=1

(pi + 1) · |κP |k+1 +O(|κP |k) for n = 1,

aP,n = 0 for 1 < n < 1 + p−k,

aP,n = |κP |2k+1−m +O(|κP |2k−m) for n = 1 + p−m−1 with 0 ≤ m ≤ k − 1,

aP,n = 0 for 1 + p−m−1 < n < 1 + p−m

with 0 ≤ m ≤ k − 1,

aP,n = O
(
|κP |max

(
l(k+1), (l−1)(2k+1)+1

))
for l ≤ n < l + p−k with 2 ≤ l ≤ p− 1,

[Case I]

aP,n = O
(
|κP |max

(
l(2k+2−m)−1, (l−1)(2k+1)+1

))
for l + p−m ≤ n < l + lp−m

with 2 ≤ l ≤ p− 1 and 1 ≤ m ≤ k, [Case II]

aP,n = O
(
|κP |max

(
l(2k+1−m), (l−1)(2k+1)+1

))
for l + lp−m−1 ≤ n < l + p−m

with 2 ≤ l ≤ p− 1 and 0 ≤ m ≤ k − 1,
[Case III]

aP,n = O
(
|κP |(l−⌊l/p⌋)(2k+1)

)
for l ≤ n < l + 1 with p ≤ l. [Case IV]

The numbers A,B,M defined above are the same as the numbers A,B,M defined in Lemma 5.4.
Inequality (5.4) is verified as follows:

For [Case I] (first argument of max):

l(k + 1) + 1

l
< k + 2 ≤ A for 2 ≤ l ≤ p− 1,

For [Case II] (first argument of max):

l(2k + 2−m)

l + p−m
<


2k + 2−m

1 + p−m−1
if m ≤ k − 1,

k + 2 if m = k

 ≤ A for 2 ≤ l ≤ p− 1 and 1 ≤ m ≤ k,
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For [Case III] (first argument of max):

l(2k + 1−m) + 1

l + lp−m−1
<

2k + 2−m

1 + p−m−1
≤ A for 2 ≤ l ≤ p− 1 and 0 ≤ m ≤ k − 1,

For [Cases I–III] (second argument of max):

(l − 1)(2k + 1) + 2

l
< k + 2 ≤ A for l = 2,

(l − 1)(2k + 1) + 2

l
≤
(
1− 1

l

)
(2k + 2)

<

(
1− 1

p

)
(2k + 2) <

2k + 2

1 + 1
p

≤ A for 3 ≤ l ≤ p− 1,

For [Case IV]:

(l − ⌊l/p⌋)(2k + 1) + 1

l
≤ l − ⌊l/p⌋+ 1/3

l
(2k + 1)

≤ 2p− 2 + 1/3

2p− 1
(2k + 1) <

(
1− 1

p2

)
(2k + 1)

<


2k + 1

1 + p−2
if k ≥ 2

k + 2 if k = 1

 ≤ A for p ≤ l. □

Finally, we describe the integer B more concretely:

Proposition 6.8. If (p, k) = (3, 1), then A = 3 and B = 5. If (p, k) = (3, 3
m+2+2m−1

4 ) for some

m ≥ 0, then A = e′m+1
n(m) =

e′m+1+1

n(m+1) and B = 2. In all other cases, B = 1.

Proof. The case (p, k) = (3, 1) is clear. Otherwise, at least one of the inequalities in

e′0 + 1

n(0)
=

2k + 2

1 + p−1
≥ 3

4
(2k + 2) =

3

2
(k + 1) ≥ k + 2 =

e′k + 1

n(k)
,

is strict, so that k ̸∈ S′, and then:

A = max

{
e′m + 1

n(m)

∣∣∣∣ 0 ≤ m ≤ k − 1

}
= max

{
2k + 2−m

1 + p−m−1

∣∣∣∣ 0 ≤ m ≤ k − 1

}
.

Consider the derivative

d

dm

2k + 2−m

1 + p−m−1
=

−pm+1 − 1 + (2k + 2−m) log p

pm+1(1 + p−m−1)2
.

The denominator is positive, and the numerator is a strictly decreasing function of m. Hence,
there is a single threshold 0 ≤ r ≤ k − 1 such that 2k+2−m

1+p−m−1 is strictly increasing for real

0 ≤ m ≤ r and strictly decreasing for real r ≤ m ≤ k − 1.

This implies that e′m+1
n(m) can be maximal for at most two integers 0 ≤ m ≤ k − 1, and these

integers would need to be consecutive. Conversely, if two consecutive integers produce the same

value e′m+1
n(m) , then this value must be A.

If e′m+1
n(m) is maximal for only one integer 0 ≤ m ≤ k − 1, then B = 1 as claimed, so assume

e′m+1
n(m) =

e′m+1+1

n(m+1) with 0 ≤ m ≤ k − 2. This is equivalent to

2k + 2−m

1 + p−m−1
=

2k + 1−m

1 + p−m−2
,

so 1 + p−m−2 = (2k + 1−m)
(
p−m−1 − p−m−2

)
, and hence pm+2 + 1 = (2k + 1−m)(p− 1). In

particular, p− 1 has to divide pm+2+1, but pm+2+1 ≡ 2 mod p− 1, so p = 3. Plugging p = 3

back in and solving for k, we obtain k = 3m+2+2m−1
4 . □
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Chart of notations

Notation Reference Short description

E
v
e
ry

w
h
e
re

p, σ, ℘ An odd prime, the absolute Frobenius, the map σ − id

ÉtExt(G,F ) Subsection 2.1 The set of isomorphism classes of (étale) G-extensions of F

lastjump(K) Subsection 1.2 Last jump of an extension K|F
Rperf Subsection 2.3 Perfect closure of a ring R

W (R), Ver Subsection 2.4 Witt vectors over R, the Verschiebung map

Wn(R) Subsection 2.4 Witt vectors of length n over R

S
e
c
ti
o
n
s
3
–
6

G A finite p-group of nilpotency class ≤ 2

g The finite Lie Zp-algebra associated to G

◦ The group law on g such that G = (g, ◦)
℘ The multiplicative Artin–Schreier map x 7! σ(x) ◦ (−x)

g.m σ(g) ◦m ◦ (−g), for g,m ∈ g⊗W (F perf)

G[p], g[p] Lemma 2.14 The p-torsion subgroup of G (resp. ideal of g)

g⊗W (F perf)//W (Fperf) The set of (g⊗W (F perf), ◦)-orbits of g⊗W (F perf)

orb The bijection H1(ΓF , G)
∼
! g⊗W (F perf)//W (Fperf)

lastjump(D) Last jump of the G-extension of F associated to D ∈ g⊗W (F perf)

S
e
c
ti
o
n

3
a
n
d

S
e
c
ti
o
n

4

F, κ, π A local function field of char. p, its residue field, a uniformizer

π̃ The Teichmüller representative of π in W (F)

D0 Definition 3.2 W (κ)-module spanned by π̃−a for a ∈ {0} ∪ N \ pN
g⊗D0//W (κ) Remark 3.5 Set of (g⊗W (κ), ◦)-orbits of g⊗D0

α0 Theorem 3.6 The bijection g⊗W (Fperf)//W (Fperf)
∼
! g⊗D0//W (κ)

µv(b) Equation (3.1) Smallest integer k ≥ 0 such that bpk ≥ v

D Definition 3.14 W (κ)-module spanned by π̃−a for a ∈ N \ pN
pr Definition 3.14 The projection D0 ↠ D
g.D Proposition 3.16 D − 1

2 [D,σ(g) + g], for g ∈ g⊗W (κ) and D ∈ g⊗D
g⊗D//W (κ) Definition 3.17 Set of (g⊗W (κ), ◦)-orbits of g⊗D

α Definition 3.18 The surjection g⊗W (Fperf)//W (Fperf) ↠ g⊗D//W (κ)

lastjump(D) Definition 3.24 Common last jump of all G-extensions associated to D ∈ g⊗D

S
e
c
ti
o
n

5 q, F A power of p, the global function field Fq(T )

P, FP A place of F , the completion of F at P

πP ,DP , αP , . . . The associated local objects at P (cf. Section 3)

α Equation (5.1) The map g⊗W (F perf)//W (Fperf) !
∏′

P g⊗DP//W (κP )

S
e
c
ti
o
n

6 Hk(Fp), hk Subsection 6.3 Higher Heisenberg group, the corresponding Lie Fp-algebra

fk Subsection 6.3 The bilinear form (Fk
p)

2 ! Fp inducing the Lie bracket of hk

Ak,m(Fq) Equation (6.5) Set of x ∈ (Fk
q )

2 such that fk(σ
i(x), x) = 0 for i = 1, . . . ,m

We also sum up in a diagram the three main bijections which we construct in this paper:

ÉtExt(G,F )
∼
 !

Lemma 2.1
H1(ΓF , G)

orb
∼
−!

Theorem 2.19
g⊗W (F perf)//W (Fperf)

α0

∼
−!

Theorem 3.6
g⊗D0//W (κ)︸ ︷︷ ︸

case F = κ((π)) local

.

When F = κ((π)) is a local field, there is also the surjection α : g ⊗ W (F perf)//W (Fperf) ↠
g ⊗ D//W (κ) from Definition 3.18, which is finite-to-one (fibers have size |g ⊗ W (κ)|), and all
elements in a given fiber correspond to extensions with the same last jump (cf. Corollary 3.23).
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Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, Cham. 2018. DOI:
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[CdGVL12] Serena Cicalò, Willem A. de Graaf, and Michael Vaughan-Lee. An effective version of the Lazard
correspondence. Journal of Algebra. 352, pp. 430–450. 2012. DOI: 10.1016/j.jalgebra.2011.11.
031.

[CL84] Henri Cohen and Hendrik W. Lenstra, Jr. Heuristics on class groups. In Number theory (New York,
1982). volume 1052 of Lecture Notes in Math.. pages 26–36. Springer, Berlin. 1984. DOI: 10.1007/
BFb0071539. ISBN: 3-540-12909-X.

[DH69] Harold Davenport and Hans Heilbronn. On the density of discriminants of cubic fields. The Bulletin
of the London Mathematical Society. 1, pp. 345–348. 1969. DOI: 10.1112/blms/1.3.345.

[DH24] Huy Dang and Matthias Hippold. The moduli space of cyclic covers in positive characteristic. In-
ternational Mathematics Research Notices. 2024(13), pp. 10169–10188. 2024. DOI: 10.1093/imrn/
rnae060.

[DY25] Ratko Darda and Takehiko Yasuda. The Batyrev-Manin conjecture for DM stacks, II. 2025. arXiv:
2502.07157.

[ETW23] Jordan S. Ellenberg, TriThang Tran, and Craig Westerland. Fox–Neuwirth–Fuks cells, quantum
shuffle algebras, and Malle’s conjecture for function fields. 2023. arXiv: 1701.04541v2.

[EVW16] Jordan S. Ellenberg, Akshay Venkatesh, and Craig Westerland. Homological stability for Hurwitz
spaces and the Cohen–Lenstra conjecture over function fields. Annals of Mathematics. Second Series.
183(3), pp. 729–786. 2016. DOI: 10.4007/annals.2016.183.3.1.

[FM02] Michael D. Fried and Ariane Mézard. Configuration spaces for wildly ramified covers. In Arithmetic
fundamental groups and noncommutative algebra (Berkeley, CA, 1999). volume 70 of Proc. Sympos.
Pure Math.. pages 353–376. Amer. Math. Soc., Providence, RI. 2002. DOI: 10.1090/pspum/070/
1935413. ISBN: 0-8218-2036-2.

[FO22] Jean-Marc Fontaine and Yi Ouyang. Theory of p-adic Galois Representations. 2022. URL: http:
//staff.ustc.edu.cn/~yiouyang/galoisrep.pdf.

[Fon90] Jean-Marc Fontaine. Représentations p-adiques des corps locaux. I. In The Grothendieck Festschrift,
Vol. II. volume 87 of Progr. Math.. pages 249–309. Birkhäuser Boston, Boston, MA. 1990. ISBN:
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[KM04] Jürgen Klüners and Gunter Malle. Counting nilpotent Galois extensions. Journal für die Reine und

Angewandte Mathematik. 572, pp. 1–26. 2004. DOI: 10.1515/crll.2004.050.
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