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A prime number p is fixed. If F is a field, we denote by ΓF := Gal(F sep|F ) its absolute Galois
group.

1. Parametrization of extensions in characteristic p

We fix a group G and a field F of characteristic p.

1.1. Extensions and cohomology classes.

Definition 1.1. A G-extension of F is an étale F -algebra K together with an action of G,
such that there is a G-equivariant F sep-algebra isomorphism between K ⊗F F sep and the ring
of maps f : G → F sep (on which G acts via (g.f)(h) = f(hg)). An isomorphism between two
G-extensions of F is a G-equivariant isomorphism between the corresponding étale F -algebras.

We denote the set of isomorphism classes ofG-extensions of F by ÉtExt(G,F ), often confusing

an element of ÉtExt(G,F ) with a representative K of the corresponding isomorphism class, and
denoting by Aut(K) the group of its G-equivariant F -algebra automorphisms.

The set ÉtExt(G,F ) is in natural bijection with the cohomology set H1(ΓF , G), i.e., the
set of conjugacy classes of continuous group homomorphisms γ : ΓF → G.1 The stabilizer
StabG(γ) of such a homomorphism γ : ΓF → G with respect to the conjugation action of G is

the centralizer of the image of γ in G. Moreover, if an extension K ∈ ÉtExt(G,F ) corresponds
to [γ] ∈ H1(ΓF , G), then Aut(K) ∼= StabG(γ), and K is a field if and only if γ is surjective.

1.2. The general parametrization principle. We describe a principle for parametrizing G-
extensions of F , following the general method used in [WY92] and [BG14, Proposition 1]. For
this, we make the following definition:

Definition 1.2. An F -geometrization of G is a group GF sep equipped with an action of ΓF and
a ΓF -equivariant group homomorphism σ : GF sep → GF sep, such that:

• The subgroup of σ-invariant elements of GF sep is exactly G;
• The subgroup of ΓF -invariant elements of GF sep, which we denote by GF , contains G.

The multiplicative Artin–Schreier map of GF sep is the ΓF -equivariant map ℘ : GF sep → GF sep

defined by g 7→ σ(g)g−1.

Example 1.3. Let G be an algebraic group over Fp. The group G(F sep), equipped with its natural
ΓF -action and Frobenius σ, is an F -geometrization of G(Fp). This is the situation the definition
is trying to generalize.

1If φ : ΓF → G is a morphism, let K be the fixed sub-F -algebra of Maps(G,F sep) under the action of ΓF

defined by (σ.f)(h) = σ(f(φ(σ)−1h)). Let f ∈ K. The relation f(φ(σ)−1h) = σ−1(f(h)) implies that the value
of f on each orbit under left multiplication by Im(φ) is determined by a single element of F sep. For σ ∈ ker(φ),

the relation f(h) = σ−1(f(h)) implies that f takes values in the fixed subfield F ′ := (F sep)ker(φ). Hence the
algebra K is isomorphic to the G-extension Maps(Im(φ)\G,F ′).

Conversely, if K is a G-extension, consider a field F ′ which is a factor of K and let H be the subgroup
of ΓF fixing it. We can show (using the fact that K ⊗ F sep ≃ Maps(G,F sep)) that F ′ is a Galois extension
of F , whose Galois group is the subgroup G′ of G preserving it, so that we have an isomorphism ΓF /H ≃ G′,
inducing a homomorphism ΓF → G (of kernel H and image G′). Choosing another factor gives a conjugate
homomorphism, as G acts transitively on the set of factors of K (because it acts transitively on the set of factors

of K ⊗ F sep ≃ (F sep)|G|, and each factor of K corresponds to at least one of these factors).
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We fix an F -geometrization GF sep of G. Note that, as the actions of σ and ΓF commute, we
have σ(GF ) ⊆ GF . We define an action of GF sep on itself by the formula:

g.m = σ(g)mg−1.

Note that g.1 = ℘(g). This action restricts to an action of GF on itself, whose set of orbits we
denote by GF//GF

. We now prove:

Proposition 1.4. There is a bijection between the set of GF -orbits of elements of GF∩℘(GF sep)
and the kernel of the map of pointed sets H1(ΓF , G) → H1(ΓF , GF sep) (in non-abelian group
cohomology).

Proof. Let m ∈ GF ∩ ℘(GF sep). We fix a g ∈ GF sep such that ℘(g) = m. We define a 1-
coboundary γg : ΓF → GF sep by the formula γg(τ) = g−1τ(g). We show that γg is valued in G,
i.e., that γg(τ) is σ-invariant for all τ ∈ ΓF :

σ(γg(τ)) = σ(g−1τ(g))

= g−1m−1τ( m︸︷︷︸
∈GF

g)

= g−1τ(g).

Therefore, γg defines a 1-coboundary ΓF → G, i.e., a group homomorphism (the action is
trivial). Note that its image in H1(ΓF , GF sep) is trivial by definition. If ḡ ∈ GF sep was a different
element such that ℘(ḡ) = m, then the equality ℘(g) = ℘(ḡ) rewrites as σ(ḡ−1g) = ḡ−1g, i.e.,
there is a δ ∈ G such that g = ḡδ. But then:

γḡ(τ) = ḡ−1τ(ḡ) = δ−1g−1τ(g)δ = δ−1γg(τ)δ,

showing that γg and γḡ are conjugate group homomorphisms ΓF → G, and thus define the same
element in ker(H1(ΓF , G)→ H1(ΓF , GF sep)), which therefore only depends on m. Now assume
that m′ ∈ GF ∩℘(GF sep) is in the same GF -orbit as m, for example m′ = µ.m for some µ ∈ GF .
Let g′ = µg, and note that ℘(g′) = µ.℘(g) = µ.m = m′. We have:

γg′(τ) = g−1µ−1τ( µ︸︷︷︸
∈GF

g) = g−1τ(g) = γg(τ)

showing that the element of ker(H1(ΓF , G)→ H1(ΓF , GF sep)) associated to m only depends on
its GF -orbit. We have constructed the desired map. It remains to see that it is a bijection.

Surjectivity. Let γ : ΓF → G be a group morphism whose image in H1(ΓF , GF sep) is trivial,
i.e., there is some g ∈ GF sep such that γ(τ) = g−1τ(g) for all τ ∈ ΓF . Let m = ℘(g). We show
that m ∈ GF by showing that it is ΓF -invariant:

∀τ ∈ ΓF , τ(m) = τ(σ(g)g−1) = σ(τ(g))τ(g)−1 = σ(g γ(τ)︸︷︷︸
∈G

)γ(τ)−1g−1 = σ(g)g−1 = m.

Therefore, m is an element of GF ∩ ℘(GF sep) and, by construction, it is mapped to the coho-
mology class of γ.

Injectivity. Let m,m′ be elements of GF ∩ ℘(GF sep) defining the same cohomology class
in ker(H1(ΓF , G) → H1(ΓF , GF sep)). Pick elements g, g′ ∈ GF sep such that m = ℘(g) and
m′ = ℘(g′), and define γ := τ 7→ g−1τ(g) and γ′ := τ 7→ (g′)−1τ(g′). By hypothesis, there is a
δ ∈ G such that γ′ = δ−1γδ. We obtain:

∀τ ∈ ΓF , (g′)−1τ(g′) = δ−1g−1τ(g)δ

which rewrites as:
∀τ ∈ ΓF , (g′)−1τ(g′) = δ−1g−1τ(g) δ︸︷︷︸

∈G⊆GF

.

The element µ := g′δ−1g−1 is then ΓF -invariant, and hence belongs to GF . We have g′ = µgδ
and therefore:

m′ = ℘(g′) = σ(µg δ︸︷︷︸
∈G

)δ−1g−1µ−1 = µ.℘(g) = µ.m
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showing that m and m′ are in the same GF -orbit. □

Definition 1.5. We say that GF sep satisfies (Trans) if GF ⊆ ℘(GF sep). We say that GF sep

satisfies (H90) if the map of pointed sets H1(ΓF , G)→ H1(ΓF , GF sep) is trivial.

Note that (Trans) ensures that the set of GF -orbits of elements of GF ∩ ℘(GF sep) is sim-
ply GF//GF

, and that (H90) ensures that kernel of the map H1(ΓF , G) → H1(ΓF , GF sep) is
all of H1(ΓF , G). By the remarks of Subsection 1.1, H1(ΓF , G) is in bijection with the set of
isomorphism classes of G-extensions of F . We obtain the following corollary:

Corollary 1.6. Assume that GF sep satisfies both (Trans) and (H90). Then, there is a bijection

ÉtExt(G,F )
∼←→ GF//GF

.

Example 1.7. The result of Corollary 1.6 specializes to well-known theories:

• The group W (F sep) of Witt vectors over F sep is an F -geometrization of Zp: we retrieve
Artin–Schreier-Witt theory. The case of Witt vectors of length 1 yields back ordinary
Artin–Schreier theory.
• The group GLn(F

sep) is an F -geometrization of GLn(Fp): we retrieve the theory of
étale φ-modules of dimension n (cf. [FO22, Subsection 3.2], and notably Remark 3.24).
In particular, the case n = 1 gives a special case of Kummer theory, namely the
parametrization of Z/(q − 1)Z-extensions.

2. p-groups and Lie algebras

2.1. Definitions.

Definition 2.1. A Lie Zp-algebra is a Zp-module L equipped with a Lie bracket [•, •] : L2 → L
which is Zp-bilinear, alternating, and satisfies the Jacobi identity:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0.

We say that L is abelian if its Lie bracket is identically zero. An ideal of L is a submodule I
such that [L, I] ⊆ I. The center of L is the ideal Z(L) formed of elements x such that [L, x] = 0.

Let L be a Lie Zp-algebra. We can form the quotient of L by an ideal I to obtain a Lie
algebra L/I. For elements x1, . . . , xn ∈ L, we use the notation

[x1, . . . , xn] := [[· · · [[︸ ︷︷ ︸
n−1

x1, x2], x3], . . . , xn].

We say that L is nilpotent if there exists an integer n such that [x1, . . . , xn+1] vanishes for all
x1, . . . , xn+1 ∈ L. The smallest such n is then the nilpotency class of L. If L has nilpotency
class n ≥ 1, then the quotient L/Z(L) has nilpotency class n− 1.

Example 2.2. Only the trivial Lie algebra L = 0 has nilpotency class 0. Lie algebras of nilpotency
class 1 are abelian Lie algebras. Lie algebras of nilpotency class 2 are nonabelian Lie algebras L
for which L/Z(L) is abelian, i.e., [L,L] ⊆ Z(L).

2.2. The Lazard Correspondence. Let L be a Lie Zp-algebra of nilpotency class < p. We
define a group law ◦ on L via the truncated Baker-Campbell-Hausdorff formula:

x ◦ y := x+ y +
1

2
[x, y] +

1

12
[x, y, y]− 1

12
[x, y, x] + . . .

where the sum is including only the finitely many terms of the Baker-Campbell-Hausdorff for-
mula which do not involve p-th commutators, thus involving only denominators coprime to p.
For instance, for groups of nilpotency class ≤ 2 (in odd characteristic), the formula simplifies
to x ◦ y = x + y + 1

2 [x, y], and in this case the Lie bracket is determined by the law ◦ via
[x, y] = x ◦ y ◦ (−x) ◦ (−y). The operation transforming the Lie algebra L into the group (L, ◦)
leads to the Lazard correspondence, which is an equivalence of categories:

{p-groups of nilpotency class < p} ←→ {finite Lie Zp-algebras of nilpotency class < p}.
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This correspondence was introduced by Lazard in [Laz54] (see also [CGV12] or [Abr98, section
1.2]), and it may be seen as analogous to the classical Lie correspondence (between Lie groups
and Lie algebras).

Subgroups of (L, ◦) correspond to subalgebras of L, normal subgroups correspond to ideals
(the quotients then correspond to each other), and the center of the Lie algebra L is also the
center of the group (L, ◦). Note that L is an abelian Lie algebra if and only if (L, ◦) is abelian,
in which case the laws + and ◦ coincide.

3. Nilpotent Artin–Schreier theory

3.1. Lifts in characteristic zero. We need an additional tool, which is constructed in [BM90,
Subsection 1.1]:

Theorem 3.1. Let F be a field of characteristic p. There exists a Zp-algebra O(F ), unique up
to isomorphism, such that:

• O(F )/pO(F ) ≃ F
• O(F ) is p-adically complete, i.e., O(F ) = lim←−O(F )/pnO(F )

• O(F ) is flat over Zp, i.e., O(F ) has no non-zero p-torsion elements.

The ring O(F ) can be constructed as a subring of W (F ), such that pkO(K) = O(K) ∩
Verk(W (K)), where k ≥ 0 and Ver is the Verschiebung map. If F ′|F is a Galois extension of
fields of characteristic p, the Galois group Gal(F ′|F ) acts naturally on O(F ′), and the subring of
invariant elements is precisely O(F ). Moreover, the Frobenius map can be lifted into a Zp-linear
map σ : O(F ) → O(F ) (reducing to σ : x 7→ xp modulo p) whose fixed points are exactly the
elements of Zp.

Example 3.2. Let k be a perfect field. Then, O(k) = W (k), O(k((t))) = W (k)((t)), and O(k(t))
is the p-adic completion of the localization of W (k)[t] at (p).

3.2. Nilpotent Artin–Schreier theory. Let G be a p-group of nilpotency class < p. The
Lazard correspondence gives a natural candidate for an F -geometrization of G to which Corol-
lary 1.6 can be applied. Indeed, consider the finite Lie Zp-algebra L corresponding to G, and
define GF sep := (L⊗O(F sep), ◦), equipped with its natural ΓF -action and Frobenius σ.

Proposition 3.3. GF sep is an F -geometrization of G satisfying (Trans) and (H90).

Proof. We have (GF sep)σ = (L ⊗ O(Fp), ◦) = (L, ◦) = G. Note also that (GF sep)ΓF = (L ⊗
O(F ), ◦). Instead of proving (Trans), we prove the stronger claim that ℘(GF sep) = GF sep .
Instead of proving (H90), we prove the stronger claim that H1(ΓF , GF sep) is trivial.

We first deal with the case L = Z/pZ, in which case GF sep is simply the additive group F sep.
Showing that ℘ is surjective requires checking that, for each x ∈ F sep, there is a y ∈ F sep such
that x = σ(y) − y. Since x = σ(y) − y is a separable polynomial equation in y, this is clear.
The fact that H1(ΓF , F

sep) = 1 follows from [Ser62, Chap. X, §1, Prop. 1].
We now prove both the triviality of H1(ΓF , GF sep) and the surjectivity of ℘ by induction

on the size of L. Assume that L is nonzero, and choose a subalgebra I in the center of L,
isomorphic to Z/pZ. Let Q = L/I. We have the exact sequence:

0→ I → L→ Q→ 0

by flatness of O(F sep) and properties of the Lazard correspondence, it induces an exact sequence
(of groups equipped with a ΓF -action):

1 (I ⊗Zp O(F sep), ◦) (L⊗Zp O(F sep), ◦) (Q⊗Zp O(F sep), ◦) 1

F sep

≃

We obtain the following exact sequence in non-abelian Galois cohomology:

H1(ΓF , F
sep)→ H1(ΓF , (L⊗Zp O(F sep), ◦))→ H1(ΓF , (Q⊗Zp O(F sep), ◦)).
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We have H1(ΓF , F
sep) = 1 by the case L = Z/pZ and H1(ΓF , (Q ⊗Zp O(F sep), ◦)) = 1 by

induction hypothesis, so that H1(ΓF , (L⊗Zp O(F sep), ◦)) = 1.
We now show the surjectivity of ℘. Let x ∈ L ⊗Zp O(F sep), and let x̄ be its projection in

Q ⊗Zp O(F sep). By induction hypothesis, there is a ȳ ∈ Q ⊗Zp O(F sep) such that ℘(ȳ) = x̄.
Choose an arbitrary lifting y0 ∈ L⊗Zp O(F sep) of ȳ. Then x− ℘(y0) belongs to I ⊗Zp O(F sep)
and hence, by the case L = Z/pZ, there is a z ∈ I ⊗Zp O(F sep) such that x = ℘(y0) + ℘(z).
As z is central, we have:

x = σ(y0)◦ (−y0)◦σ(z)◦ (−z) = σ(y0)◦σ(z)◦ (−y0)◦◦(−z) = σ(y0+ z)◦ (−y0− z) = ℘(y0+ z)

establishing the surjectivity of ℘. □

We define a left action of (L⊗O(F ), ◦) on L⊗O(F ) by:

g.m := σ(g) ◦m ◦ (−g).
We write L⊗O(F )//O(F ) for the set of (L⊗O(F ), ◦)-orbits of L⊗O(F ).

Theorem 3.4 (Parametrization). There is a bijection between the sets ÉtExt(G,F ) and L ⊗
O(F )//O(F ). Moreover, if K|F is a G-extension of F and if m ∈ L⊗O(F ) is an element of the
orbit corresponding to K, then Stab(L⊗O(F ),◦)(m) ∼= Aut(K).

Proof. The first part follows from Corollary 1.6 and Proposition 3.3. For the second part, let
g ∈ L ⊗ O(F sep) be such that m = g.0, so that a homomorphism γ : ΓF → (L, ◦) associated
to K is given by τ 7→ (−g) ◦ τ(g). As we remarked in Subsection 1.1, we have an isomorphism
Aut(K) ≃ Stab(L,◦)(γ). For all h ∈ L, we have:

h ∈ Stab(L,◦)(γ) ⇐⇒ ∀τ ∈ ΓF , h ◦ (−g) ◦ τ(g) ◦ (−h)︸ ︷︷ ︸
=τ(−h)

= (−g) ◦ τ(g)

⇐⇒ ∀τ ∈ ΓF , τ(g ◦ (−h) ◦ (−g)) = g ◦ (−h) ◦ (−g)
⇐⇒ g ◦ (−h) ◦ (−g) ∈ L⊗O(F ).

Therefore, conjugation by g defines an isomorphism between Stab(L,◦)(γ) and the subgroup of
L⊗O(F ) formed of elements h′ such that (−g) ◦ (−h′) ◦ g ∈ L. To conclude, it suffices to show
that the latter set coincides with Stab(L⊗O(F ),◦)(m). Let h′ ∈ L⊗O(F ). We have:

h′ ∈ Stab(L⊗O(F ),◦)(m) ⇐⇒ σ(h) ◦m ◦ (−h) = m

⇐⇒ σ(h) ◦ σ(g) ◦ (−g) ◦ (−h) = σ(g) ◦ (−g)
⇐⇒ (−g) ◦ (−h) ◦ g = σ((−g) ◦ (−h) ◦ g)
⇐⇒ (−g) ◦ (−h) ◦ g ∈ L. □

Example 3.5 (Artin–Schreier theory). The abelian Lie algebra L = Z/pZ corresponds to the
cyclic group (L, ◦) = Z/pZ. We have L⊗O(F ) = F . The action of L⊗O(F ) on itself is given
by x.m = m+ xp − x for m,x ∈ F . We recover Artin–Schreier theory for Z/pZ-extensions.

Remark 3.6. Finite p-groups/Lie Zp-algebras can be replaced by pro-p-groups and profinite Lie
Zp-algebras everywhere.

Remark 3.7. Let F be a local field of characteristic p. Using a “fundamental domain” to
minimize the redundancy of the parametrizations above, Abrashkin describes an explicit iso-
morphism between:

• the quotient of the wild quotient of ΓF by its p-th commutators;
• (L, ◦), where L is the quotient of the profinite free Lie Zp-algebra with countably many
generators by its p-th commutators.

The main advantage of this description over the traditional description of ΓF ([Koc67]) is that
Abrashkin computes the ideals corresponding to the ramification filtration, giving us access to
invariants like the discriminant.
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tifiques de l’École Normale Supérieure. Troisième Série 71 (1954), pp. 101–190. issn:
0012-9593. url: http://www.numdam.org/item?id=ASENS_1954_3_71_2_101_0.

[Ser62] Jean-Pierre Serre. Corps Locaux. Hermann, Paris, 1962. isbn: 978-2-7056-1296-2.
[WY92] David J. Wright and Akihiko Yukie. “Prehomogeneous vector spaces and field ex-

tensions”. In: Inventiones Mathematicae 110.2 (1992), pp. 283–314. issn: 0020-9910.
doi: 10.1007/BF01231334.

https://doi.org/10.1070/im1998v062n05ABEH000207
https://doi.org/10.1007/978-1-4939-1590-3\_3
https://doi.org/10.1007/978-1-4939-1590-3\_3
https://doi.org/10.1007/978-0-8176-4574-8_7
https://doi.org/10.1016/j.jalgebra.2011.11.031
https://doi.org/10.1016/j.jalgebra.2011.11.031
https://doi.org/10.1016/j.jalgebra.2011.11.031
http://staff.ustc.edu.cn/~yiouyang/galoisrep.pdf
https://doi.org/10.1002/mana.19670350509
http://www.numdam.org/item?id=ASENS_1954_3_71_2_101_0
https://doi.org/10.1007/BF01231334

	1. Parametrization of extensions in characteristic p
	1.1. Extensions and cohomology classes
	1.2. The general parametrization principle.

	2. p-groups and Lie algebras
	2.1. Definitions
	2.2. The Lazard Correspondence

	3. Nilpotent Artin–Schreier theory
	3.1. Lifts in characteristic zero.
	3.2. Nilpotent Artin–Schreier theory


