NILPOTENT ARTIN–SCHREIER THEORY OBERSEMINAR NUMBER THEORY AND ARITHMETICAL STATISTICS OCTOBER 16TH, 2024

A prime number p is fixed. If F is a field, we denote by $\Gamma_F := \text{Gal}(F^{\text{sep}}|F)$ its absolute Galois group.

1. PARAMETRIZATION OF EXTENSIONS IN CHARACTERISTIC p

We fix a group G and a field F of characteristic p .

1.1. Extensions and cohomology classes.

Definition 1.1. A G-extension of F is an étale F-algebra K together with an action of G, such that there is a G-equivariant F^{sep} -algebra isomorphism between $K \otimes_F F^{\text{sep}}$ and the ring of maps $f: G \to F^{\rm sep}$ (on which G acts via $(g.f)(h) = f(hg)$). An isomorphism between two G-extensions of F is a G-equivariant isomorphism between the corresponding étale F -algebras.

We denote the set of isomorphism classes of G-extensions of F by $\text{EtExt}(G, F)$, often confusing an element of $\text{EtExt}(G, F)$ with a representative K of the corresponding isomorphism class, and denoting by $Aut(K)$ the group of its G-equivariant F-algebra automorphisms.

The set $\text{EtExt}(G, F)$ is in natural bijection with the cohomology set $H^1(\Gamma_F, G)$, i.e., the set of conjugacy classes of continuous group homomorphisms $\gamma : \Gamma_F \to G$ ^{[1](#page-0-0)}. The stabilizer Stab_G(γ) of such a homomorphism $\gamma : \Gamma_F \to G$ with respect to the conjugation action of G is the centralizer of the image of γ in G. Moreover, if an extension $K \in \text{ÉtExt}(G, F)$ corresponds to $[\gamma] \in H^1(\Gamma_F, G)$, then $\text{Aut}(K) \cong \text{Stab}_G(\gamma)$, and K is a field if and only if γ is surjective.

1.2. The general parametrization principle. We describe a principle for parametrizing Gextensions of F, following the general method used in [\[WY92\]](#page-5-0) and [\[BG14,](#page-5-1) Proposition 1]. For this, we make the following definition:

Definition 1.2. An F-geometrization of G is a group G_F _{sep} equipped with an action of Γ_F and a Γ_F -equivariant group homomorphism $\sigma : G_{F^{\text{sep}}} \to G_{F^{\text{sep}}}$, such that:

- The subgroup of σ -invariant elements of G_F sep is exactly G ;
- The subgroup of Γ_F -invariant elements of $G_{F^{\text{sep}}}$, which we denote by G_F , contains G.

The multiplicative Artin–Schreier map of $G_{F^{sep}}$ is the Γ_F -equivariant map $\wp: G_{F^{sep}} \to G_{F^{sep}}$ defined by $g \mapsto \sigma(g)g^{-1}$.

Example 1.3. Let G be an algebraic group over \mathbb{F}_p . The group $\mathcal{G}(F^{\text{sep}})$, equipped with its natural Γ_F -action and Frobenius σ , is an F-geometrization of $\mathcal{G}(\mathbb{F}_p)$. This is the situation the definition is trying to generalize.

¹If $\varphi : \Gamma_F \to G$ is a morphism, let K be the fixed sub-F-algebra of Maps (G, F^{sep}) under the action of Γ_F defined by $(\sigma.f)(h) = \sigma(f(\varphi(\sigma)^{-1}h))$. Let $f \in K$. The relation $f(\varphi(\sigma)^{-1}h) = \sigma^{-1}(f(h))$ implies that the value of f on each orbit under left multiplication by $\text{Im}(\varphi)$ is determined by a single element of F^{sep} . For $\sigma \in \text{ker}(\varphi)$, the relation $f(h) = \sigma^{-1}(f(h))$ implies that f takes values in the fixed subfield $F' := (F^{\text{sep}})^{\text{ker}(\varphi)}$. Hence the algebra K is isomorphic to the G-extension Maps $(\text{Im}(\varphi)\backslash G, F')$.

Conversely, if K is a G-extension, consider a field F' which is a factor of K and let H be the subgroup of Γ_F fixing it. We can show (using the fact that $K \otimes F^{\text{sep}} \simeq \text{Maps}(G, F^{\text{sep}})$) that F' is a Galois extension of F, whose Galois group is the subgroup G' of G preserving it, so that we have an isomorphism $\Gamma_F/H \simeq G'$, inducing a homomorphism $\Gamma_F \to G$ (of kernel H and image G'). Choosing another factor gives a conjugate homomorphism, as G acts transitively on the set of factors of K (because it acts transitively on the set of factors of $K \otimes F^{\rm sep} \simeq (F^{\rm sep})^{|G|}$, and each factor of K corresponds to at least one of these factors).

We fix an F-geometrization $G_{F^{sep}}$ of G. Note that, as the actions of σ and Γ_F commute, we have $\sigma(G_F) \subseteq G_F$. We define an action of $G_{F^{\text{sep}}}$ on itself by the formula:

$$
g.m = \sigma(g)mg^{-1}.
$$

Note that $g.1 = \wp(g)$. This action restricts to an action of G_F on itself, whose set of orbits we denote by $G_F/\!\!/_{G_F}$. We now prove:

Proposition 1.4. There is a bijection between the set of G_F -orbits of elements of $G_F \cap \mathcal{O}(G_F \cup \{e\})$ and the kernel of the map of pointed sets $H^1(\Gamma_F, G) \to H^1(\Gamma_F, G_{F^{\text{sep}}})$ (in non-abelian group cohomology).

Proof. Let $m \in G_F \cap \wp(G_{F^{\text{sep}}})$. We fix a $g \in G_{F^{\text{sep}}}$ such that $\wp(g) = m$. We define a 1coboundary $\gamma_g : \Gamma_F \to G_{F^{\text{sep}}}$ by the formula $\gamma_g(\tau) = g^{-1} \tau(g)$. We show that γ_g is valued in G, i.e., that $\gamma_g(\tau)$ is σ -invariant for all $\tau \in \Gamma_F$:

$$
\sigma(\gamma_g(\tau)) = \sigma(g^{-1}\tau(g))
$$

= $g^{-1}m^{-1}\tau(\underbrace{m}_{\in G_F}g)$
= $g^{-1}\tau(g)$.

Therefore, γ_g defines a 1-coboundary $\Gamma_F \to G$, i.e., a group homomorphism (the action is trivial). Note that its image in $H^1(\Gamma_F, G_{F^{\text{sep}}})$ is trivial by definition. If $\bar{g} \in G_{F^{\text{sep}}}$ was a different element such that $\wp(\bar{g}) = m$, then the equality $\wp(g) = \wp(\bar{g})$ rewrites as $\sigma(\bar{g}^{-1}g) = \bar{g}^{-1}g$, i.e., there is a $\delta \in G$ such that $q = \overline{q}\delta$. But then:

$$
\gamma_{\bar{g}}(\tau) = \bar{g}^{-1}\tau(\bar{g}) = \delta^{-1}g^{-1}\tau(g)\delta = \delta^{-1}\gamma_g(\tau)\delta,
$$

showing that γ_q and $\gamma_{\bar{q}}$ are conjugate group homomorphisms $\Gamma_F \to G$, and thus define the same element in ker $(H^1(\Gamma_F, G) \to H^1(\Gamma_F, G_{F^{\text{sep}}}))$, which therefore only depends on m. Now assume that $m' \in G_F \cap \mathfrak{g}(G_{F^{sep}})$ is in the same G_F -orbit as m, for example $m' = \mu \cdot m$ for some $\mu \in G_F$. Let $g' = \mu g$, and note that $\varphi(g') = \mu \cdot \varphi(g) = \mu \cdot m = m'$. We have:

$$
\gamma_{g'}(\tau) = g^{-1} \mu^{-1} \tau \left(\mu \over \epsilon G_F \right) = g^{-1} \tau(g) = \gamma_g(\tau)
$$

showing that the element of $\ker(H^1(\Gamma_F, G) \to H^1(\Gamma_F, G_{F^{\text{sep}}}))$ associated to m only depends on its G_F -orbit. We have constructed the desired map. It remains to see that it is a bijection.

Surjectivity. Let $\gamma : \Gamma_F \to G$ be a group morphism whose image in $H^1(\Gamma_F, G_{F^{\text{sep}}})$ is trivial, i.e., there is some $g \in G_{F^{\text{sep}}}$ such that $\gamma(\tau) = g^{-1} \tau(g)$ for all $\tau \in \Gamma_F$. Let $m = \wp(g)$. We show that $m \in G_F$ by showing that it is Γ_F -invariant:

$$
\forall \tau \in \Gamma_F, \quad \tau(m) = \tau(\sigma(g)g^{-1}) = \sigma(\tau(g))\tau(g)^{-1} = \sigma(g\underbrace{\gamma(\tau)}_{\in G}\gamma(\tau)^{-1}g^{-1} = \sigma(g)g^{-1} = m.
$$

Therefore, m is an element of $G_F \cap \mathcal{O}(G_{F^{sep}})$ and, by construction, it is mapped to the cohomology class of γ .

Injectivity. Let m, m' be elements of $G_F \cap \wp(G_{F^{\text{sep}}})$ defining the same cohomology class in ker $(H^1(\Gamma_F, G) \to H^1(\Gamma_F, G_{F^{\text{sep}}})$. Pick elements $g, g' \in G_{F^{\text{sep}}}$ such that $m = \wp(g)$ and $m' = \wp(g')$, and define $\gamma := \tau \mapsto g^{-1}\tau(g)$ and $\gamma' := \tau \mapsto (g')^{-1}\tau(g')$. By hypothesis, there is a $\delta \in G$ such that $\gamma' = \delta^{-1} \gamma \delta$. We obtain:

$$
\forall \tau \in \Gamma_F, \quad (g')^{-1} \tau(g') = \delta^{-1} g^{-1} \tau(g) \delta
$$

which rewrites as:

$$
\forall \tau \in \Gamma_F, \quad (g')^{-1} \tau(g') = \delta^{-1} g^{-1} \tau(g) \underbrace{\delta}_{\in G \subseteq G_F}
$$

.

The element $\mu := g' \delta^{-1} g^{-1}$ is then Γ_F -invariant, and hence belongs to G_F . We have $g' = \mu g \delta$ and therefore:

$$
m' = \wp(g') = \sigma(\mu g \underbrace{\delta}_{\in G}) \delta^{-1} g^{-1} \mu^{-1} = \mu \cdot \wp(g) = \mu \cdot m
$$

showing that m and m' are in the same G_F -orbit. \Box

Definition 1.5. We say that $G_{F^{sep}}$ satisfies (Trans) if $G_F \subseteq \wp(G_{F^{sep}})$. We say that $G_{F^{sep}}$ satisfies (H90) if the map of pointed sets $H^1(\Gamma_F, G) \to H^1(\Gamma_F, G_{F^{\text{sep}}})$ is trivial.

Note that (Trans) ensures that the set of G_F -orbits of elements of $G_F \cap \mathcal{P}(G_{F^{sep}})$ is simply $G_F/\!\!/_{G_F}$, and that (H90) ensures that kernel of the map $H^1(\Gamma_F, G) \to H^1(\Gamma_F, G_{F^{\text{sep}}})$ is all of $H^1(\Gamma_F, G)$. By the remarks of [Subsection 1.1,](#page-0-1) $H^1(\Gamma_F, G)$ is in bijection with the set of isomorphism classes of G -extensions of F . We obtain the following corollary:

Corollary 1.6. Assume that $G_{F^{sep}}$ satisfies both (Trans) and (H90). Then, there is a bijection

$$
\mathrm{EtExt}(G,F)\longleftrightarrow G_F/\!\!/_{G_F}.
$$

Example 1.7. The result of [Corollary 1.6](#page-2-0) specializes to well-known theories:

- The group $W(F^{\text{sep}})$ of Witt vectors over F^{sep} is an F-geometrization of \mathbb{Z}_p : we retrieve Artin–Schreier-Witt theory. The case of Witt vectors of length 1 yields back ordinary Artin–Schreier theory.
- The group $GL_n(F^{sep})$ is an F-geometrization of $GL_n(\mathbb{F}_p)$: we retrieve the theory of étale φ -modules of dimension n (cf. [\[FO22,](#page-5-2) Subsection 3.2], and notably Remark 3.24). In particular, the case $n = 1$ gives a special case of Kummer theory, namely the parametrization of $\mathbb{Z}/(q-1)\mathbb{Z}$ -extensions.

2. p-groups and Lie algebras

2.1. Definitions.

Definition 2.1. A Lie \mathbb{Z}_p -algebra is a \mathbb{Z}_p -module L equipped with a Lie bracket $[\bullet, \bullet] : L^2 \to L^2$ which is \mathbb{Z}_p -bilinear, alternating, and satisfies the Jacobi identity:

$$
[[a, b], c] + [[b, c], a] + [[c, a], b] = 0.
$$

We say that L is abelian if its Lie bracket is identically zero. An ideal of L is a submodule I such that $[L, I] \subseteq I$. The center of L is the ideal $Z(L)$ formed of elements x such that $[L, x] = 0$.

Let L be a Lie \mathbb{Z}_p -algebra. We can form the quotient of L by an ideal I to obtain a Lie algebra L/I . For elements $x_1, \ldots, x_n \in L$, we use the notation

$$
[x_1,\ldots,x_n]:=\underbrace{[[\cdots[[x_1,x_2],x_3],\ldots,x_n]}_{n-1}.
$$

We say that L is *nilpotent* if there exists an integer n such that $[x_1, \ldots, x_{n+1}]$ vanishes for all $x_1, \ldots, x_{n+1} \in L$. The smallest such n is then the nilpotency class of L. If L has nilpotency class $n \geq 1$, then the quotient $L/Z(L)$ has nilpotency class $n-1$.

Example 2.2. Only the trivial Lie algebra $L = 0$ has nilpotency class 0. Lie algebras of nilpotency class 1 are abelian Lie algebras. Lie algebras of nilpotency class 2 are nonabelian Lie algebras L for which $L/Z(L)$ is abelian, i.e., $[L, L] \subseteq Z(L)$.

2.2. The Lazard Correspondence. Let L be a Lie \mathbb{Z}_p -algebra of nilpotency class $\lt p$. We define a group law \circ on L via the truncated Baker-Campbell-Hausdorff formula:

$$
x \circ y := x + y + \frac{1}{2}[x, y] + \frac{1}{12}[x, y, y] - \frac{1}{12}[x, y, x] + \dots
$$

where the sum is including only the finitely many terms of the Baker-Campbell-Hausdorff formula which do not involve p -th commutators, thus involving only denominators coprime to p . For instance, for groups of nilpotency class ≤ 2 (in odd characteristic), the formula simplifies to $x \circ y = x + y + \frac{1}{2}$ $\frac{1}{2}[x, y]$, and in this case the Lie bracket is determined by the law \circ via $[x, y] = x \circ y \circ (-x) \circ (-y)$. The operation transforming the Lie algebra L into the group (L, \circ) leads to the Lazard correspondence, which is an equivalence of categories:

 ${p\text{-groups of nilpotency class} < p} \longleftrightarrow \{\text{finite Lie } \mathbb{Z}_p\text{-algebras of nilpotency class } < p\}.$

This correspondence was introduced by Lazard in [\[Laz54\]](#page-5-3) (see also [\[CGV12\]](#page-5-4) or [\[Abr98,](#page-5-5) section 1.2]), and it may be seen as analogous to the classical Lie correspondence (between Lie groups and Lie algebras).

Subgroups of (L, \circ) correspond to subalgebras of L, normal subgroups correspond to ideals (the quotients then correspond to each other), and the center of the Lie algebra L is also the center of the group (L, \circ) . Note that L is an abelian Lie algebra if and only if (L, \circ) is abelian, in which case the laws $+$ and \circ coincide.

3. Nilpotent Artin–Schreier theory

3.1. Lifts in characteristic zero. We need an additional tool, which is constructed in [\[BM90,](#page-5-6) Subsection 1.1]:

Theorem 3.1. Let F be a field of characteristic p. There exists a \mathbb{Z}_p -algebra $O(F)$, unique up to isomorphism, such that:

- $O(F)/pO(F) \simeq F$
- $O(F)$ is p-adically complete, i.e., $O(F) = \varprojlim_{n} O(F)/p^n O(F)$
- $O(F)$ is flat over \mathbb{Z}_p , i.e., $O(F)$ has no non-zero p-torsion elements.

The ring $O(F)$ can be constructed as a subring of $W(F)$, such that $p^kO(K) = O(K) \cap$ Ver^k($W(K)$), where $k \geq 0$ and Ver is the Verschiebung map. If $F'|F$ is a Galois extension of fields of characteristic p, the Galois group $Gal(F'|F)$ acts naturally on $O(F')$, and the subring of invariant elements is precisely $O(F)$. Moreover, the Frobenius map can be lifted into a \mathbb{Z}_p -linear map $\sigma: O(F) \to O(F)$ (reducing to $\sigma: x \mapsto x^p$ modulo p) whose fixed points are exactly the elements of \mathbb{Z}_p .

Example 3.2. Let k be a perfect field. Then, $O(k) = W(k)$, $O(k(\ell)) = W(k)(\ell)$, and $O(k(\ell))$ is the p-adic completion of the localization of $W(k)[t]$ at (p) .

3.2. Nilpotent Artin–Schreier theory. Let G be a p-group of nilpotency class $\lt p$. The Lazard correspondence gives a natural candidate for an F-geometrization of G to which [Corol](#page-2-0)[lary 1.6](#page-2-0) can be applied. Indeed, consider the finite Lie \mathbb{Z}_p -algebra L corresponding to G, and define $G_{F^{sep}} := (L \otimes O(F^{sep}), \circ)$, equipped with its natural Γ_F -action and Frobenius σ .

Proposition 3.3. $G_{F^{sep}}$ is an F-geometrization of G satisfying (Trans) and (H90).

Proof. We have $(G_{F^{sep}})^{\sigma} = (L \otimes O(\mathbb{F}_p), \circ) = (L, \circ) = G$. Note also that $(G_{F^{sep}})^{\Gamma_F} = (L \otimes$ $O(F), \circ$). Instead of proving (Trans), we prove the stronger claim that $\wp(G_{F^{\text{sep}}}) = G_{F^{\text{sep}}}$. Instead of proving (H90), we prove the stronger claim that $H^1(\Gamma_F, G_{F^{\text{sep}}})$ is trivial.

We first deal with the case $\overline{L} = \mathbb{Z}/p\mathbb{Z}$, in which case $G_{F^{\text{sep}}}$ is simply the additive group F^{sep} . Showing that \wp is surjective requires checking that, for each $x \in F^{\text{sep}}$, there is a $y \in F^{\text{sep}}$ such that $x = \sigma(y) - y$. Since $x = \sigma(y) - y$ is a separable polynomial equation in y, this is clear. The fact that $H^1(\Gamma_F, F^{\text{sep}}) = 1$ follows from [\[Ser62,](#page-5-7) Chap. X, §1, Prop. 1].

We now prove both the triviality of $H^1(\Gamma_F, G_{F^{\text{sep}}})$ and the surjectivity of \wp by induction on the size of L . Assume that L is nonzero, and choose a subalgebra I in the center of L , isomorphic to $\mathbb{Z}/p\mathbb{Z}$. Let $Q = L/I$. We have the exact sequence:

$$
0 \to I \to L \to Q \to 0
$$

by flatness of $O(F^{\text{sep}})$ and properties of the Lazard correspondence, it induces an exact sequence (of groups equipped with a Γ_F -action):

$$
1 \longrightarrow (I \otimes_{\mathbb{Z}_p} O(F^{\text{sep}}), \circ) \longrightarrow (L \otimes_{\mathbb{Z}_p} O(F^{\text{sep}}), \circ) \longrightarrow (Q \otimes_{\mathbb{Z}_p} O(F^{\text{sep}}), \circ) \longrightarrow 1
$$

We obtain the following exact sequence in non-abelian Galois cohomology:

 $H^1(\Gamma_F, F^{\text{sep}}) \to H^1(\Gamma_F, (L \otimes_{\mathbb{Z}_p} O(F^{\text{sep}}), \circ)) \to H^1(\Gamma_F, (Q \otimes_{\mathbb{Z}_p} O(F^{\text{sep}}), \circ)).$

We have $H^1(\Gamma_F, F^{\text{sep}}) = 1$ by the case $L = \mathbb{Z}/p\mathbb{Z}$ and $H^1(\Gamma_F, (Q \otimes_{\mathbb{Z}_p} O(F^{\text{sep}}), \circ)) = 1$ by induction hypothesis, so that $H^1(\Gamma_F, (L \otimes_{\mathbb{Z}_p} O(F^{\text{sep}}), \circ)) = 1$.

We now show the surjectivity of \wp . Let $x \in L \otimes_{\mathbb{Z}_p} O(F^{\text{sep}})$, and let \bar{x} be its projection in $Q \otimes_{\mathbb{Z}_p} O(F^{\text{sep}})$. By induction hypothesis, there is a $\overline{y} \in Q \otimes_{\mathbb{Z}_p} O(F^{\text{sep}})$ such that $\wp(\overline{y}) = \overline{x}$. Choose an arbitrary lifting $y_0 \in L \otimes_{\mathbb{Z}_p} O(F^{\text{sep}})$ of \bar{y} . Then $x - \rho(y_0)$ belongs to $I \otimes_{\mathbb{Z}_p} O(F^{\text{sep}})$ and hence, by the case $L = \mathbb{Z}/p\mathbb{Z}$, there is a $z \in I \otimes_{\mathbb{Z}_p} O(F^{\text{sep}})$ such that $x = \wp(y_0) + \wp(z)$. As z is central, we have:

$$
x = \sigma(y_0) \circ (-y_0) \circ \sigma(z) \circ (-z) = \sigma(y_0) \circ \sigma(z) \circ (-y_0) \circ \sigma(-z) = \sigma(y_0 + z) \circ (-y_0 - z) = \wp(y_0 + z)
$$

establishing the surjective of \wp

lishing the surjectivity of $\wp.$

We define a left action of $(L \otimes O(F), \circ)$ on $L \otimes O(F)$ by:

$$
g.m := \sigma(g) \circ m \circ (-g).
$$

We write $L \otimes O(F)/\!\!/_{O(F)}$ for the set of $(L \otimes O(F), \circ)$ -orbits of $L \otimes O(F)$.

Theorem 3.4 (Parametrization). There is a bijection between the sets $\text{EtExt}(G, F)$ and $L \otimes$ $O(F)/\!\!/_{\!O(F)}$. Moreover, if $K|F$ is a G-extension of F and if $m\in L\otimes O(F)$ is an element of the orbit corresponding to K, then $\text{Stab}_{(L\otimes O(F),\circ)}(m) \cong \text{Aut}(K)$.

Proof. The first part follows from [Corollary 1.6](#page-2-0) and [Proposition 3.3.](#page-3-0) For the second part, let $g \in L \otimes O(F^{\text{sep}})$ be such that $m = g.0$, so that a homomorphism $\gamma : \Gamma_F \to (L, \circ)$ associated to K is given by $\tau \mapsto (-g) \circ \tau(g)$. As we remarked in [Subsection 1.1,](#page-0-1) we have an isomorphism $\mathrm{Aut}(K) \simeq \mathrm{Stab}_{(L,\circ)}(\gamma)$. For all $h \in L$, we have:

$$
h \in \text{Stab}_{(L,\circ)}(\gamma) \iff \forall \tau \in \Gamma_F, \ h \circ (-g) \circ \tau(g) \circ \underbrace{(-h)}_{=\tau(-h)} = (-g) \circ \tau(g)
$$

$$
\iff \forall \tau \in \Gamma_F, \ \tau(g \circ (-h) \circ (-g)) = g \circ (-h) \circ (-g)
$$

$$
\iff g \circ (-h) \circ (-g) \in L \otimes O(F).
$$

Therefore, conjugation by g defines an isomorphism between $\text{Stab}_{(L,\circ)}(\gamma)$ and the subgroup of $L \otimes O(F)$ formed of elements h' such that $(-g) \circ (-h') \circ g \in L$. To conclude, it suffices to show that the latter set coincides with $\text{Stab}_{(L\otimes O(F),\circ)}(m)$. Let $h' \in L \otimes O(F)$. We have:

$$
h' \in \text{Stab}_{(L \otimes O(F), \circ)}(m) \iff \sigma(h) \circ m \circ (-h) = m
$$

\n
$$
\iff \sigma(h) \circ \sigma(g) \circ (-g) \circ (-h) = \sigma(g) \circ (-g)
$$

\n
$$
\iff (-g) \circ (-h) \circ g = \sigma((-g) \circ (-h) \circ g)
$$

\n
$$
\iff (-g) \circ (-h) \circ g \in L.
$$

Example 3.5 (Artin–Schreier theory). The abelian Lie algebra $L = \mathbb{Z}/p\mathbb{Z}$ corresponds to the cyclic group $(L, \circ) = \mathbb{Z}/p\mathbb{Z}$. We have $L \otimes O(F) = F$. The action of $L \otimes O(F)$ on itself is given by $x.m = m + x^p - x$ for $m, x \in F$. We recover Artin–Schreier theory for $\mathbb{Z}/p\mathbb{Z}$ -extensions.

Remark 3.6. Finite p-groups/Lie \mathbb{Z}_p -algebras can be replaced by pro-p-groups and profinite Lie \mathbb{Z}_p -algebras everywhere.

Remark 3.7. Let F be a local field of characteristic p . Using a "fundamental domain" to minimize the redundancy of the parametrizations above, Abrashkin describes an explicit isomorphism between:

- the quotient of the wild quotient of Γ_F by its p-th commutators;
- (\mathcal{L}, \circ), where \mathcal{L} is the quotient of the profinite free Lie \mathbb{Z}_p -algebra with countably many generators by its p-th commutators.

The main advantage of this description over the traditional description of Γ_F ([\[Koc67\]](#page-5-8)) is that Abrashkin computes the ideals corresponding to the ramification filtration, giving us access to invariants like the discriminant.

REFERENCES

- [Abr98] V. A. Abrashkin. "A ramification filtration of the Galois group of a local field. III". In: Izv. Ross. Akad. Nauk Ser. Mat. 62.5 (1998), pp. 3–48. issn: 1607-0046,2587-5906. doi: [10.1070/im1998v062n05ABEH000207](https://doi.org/10.1070/im1998v062n05ABEH000207).
- [BG14] Manjul Bhargava and Benedict H. Gross. "Arithmetic invariant theory". In: Symmetry: representation theory and its applications. Vol. 257. Progr. Math. Birkhäuser/Springer, New York, 2014, pp. 33–54. ISBN: 978-1-4939-1589-7; 978-1-4939-1590-3. DOI: [10.](https://doi.org/10.1007/978-1-4939-1590-3_3) [1007/978-1-4939-1590-3_3](https://doi.org/10.1007/978-1-4939-1590-3_3).
- [BM90] Pierre Berthelot and William Messing. "Théorie de Dieudonné cristalline. III. Théorèmes d'équivalence et de pleine fidélité". In: The Grothendieck Festschrift, Vol. I. Vol. 86. Progr. Math. Birkh¨auser Boston, Boston, MA, 1990, pp. 173–247. isbn: 0-8176-3427- 4. doi: [10.1007/978-0-8176-4574-8_7](https://doi.org/10.1007/978-0-8176-4574-8_7).
- [CGV12] Serena Cical`o, Willem A. de Graaf, and Michael Vaughan-Lee. "An effective version of the Lazard correspondence". In: J. Algebra 352 (2012), pp. 430–450. issn: 0021- 8693,1090-266X. DOI: [10.1016/j.jalgebra.2011.11.031](https://doi.org/10.1016/j.jalgebra.2011.11.031). URL: [https://doi.org/](https://doi.org/10.1016/j.jalgebra.2011.11.031) [10.1016/j.jalgebra.2011.11.031](https://doi.org/10.1016/j.jalgebra.2011.11.031).
- [FO22] Jean-Marc Fontaine and Yi Ouyang. Theory of p-adic Galois Representations. 2022. url: <http://staff.ustc.edu.cn/~yiouyang/galoisrep.pdf>.
- [Koc67] Helmut Koch. "Uber die Galoissche Gruppe der algebraischen Abschliessung eines ¨ Potenzreihenkörpers mit endlichem Konstantenkörper". In: Mathematische Nachrichten 35 (1967), pp. 323–327. issn: 0025-584X,1522-2616. doi: [10.1002/mana.19670350509](https://doi.org/10.1002/mana.19670350509).
- [Laz54] Michel Lazard. "Sur les groupes nilpotents et les anneaux de Lie". In: Annales Scientifiques de l'École Normale Supérieure. Troisième Série 71 (1954), pp. 101–190. ISSN: 0012-9593. url: http://www.numdam.org/item?id=ASENS_1954_3_71_2_101_0.
- [Ser62] Jean-Pierre Serre. Corps Locaux. Hermann, Paris, 1962. isbn: 978-2-7056-1296-2.
- [WY92] David J. Wright and Akihiko Yukie. "Prehomogeneous vector spaces and field extensions". In: Inventiones Mathematicae 110.2 (1992), pp. 283–314. issn: 0020-9910. doi: [10.1007/BF01231334](https://doi.org/10.1007/BF01231334).