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Abstract: Using the language and the tools of rigid analytic geometry, Harbater (1987) has defined
a “patching operation” which can be used to solve the inverse Galois problem over fields like ℚ𝑝(𝑇 )
or 𝔽𝑞((𝑋))(𝑇 ). Later, Haran and Völklein (1996) rephrased this construction in a purely algebraic
language, replacing all geometric arguments with (almost entirely) explicit constructions. Our goal
is to present their proof.

In the whole document, we fix a field 𝐾 equipped with a nontrivial ultrametric valuation 𝑣 for which
it is complete. For example: ℚ𝑝, any 𝑝-adic field, 𝔽𝑞((𝑇 )), 𝐾((𝑇 )) for any field 𝐾.

The main reference is [1]. I am greatly indebted to Pierre Dèbes for explaining this proof to me.
His explanations have directly inspired mine.

1.  Statement

To make things simple, we take the following definition of “realization”:

Definition 1.1.  A realization of a finite group 𝐺 is a field extension 𝐹|𝐾(𝑇 ) such that:
1. 𝐹|𝐾(𝑇 ) is Galois with Galois group isomorphic to 𝐺;
2. 𝐹|𝐾(𝑇 ) is regular, i.e. 𝐹 ∩ 𝐾 = 𝐾;
3. 𝐹  has an unramified prime of degree 1, i.e. for some 𝑡0 ∈ 𝐾, the canonical embedding 𝐾(𝑇) ↪

𝐾((𝑇 − 𝑡0)) extends into an embedding 𝐹 ⊆ 𝐾((𝑇 − 𝑡0)). The (𝑇 − 𝑡0)-adic valuation of 𝐾((𝑇 −
𝑡0)) then restricts to a place 𝑣 of 𝐹  above (𝑇 − 𝑡0), with 𝐹𝑣 ≃ 𝐾((𝑇 − 𝑡0)) and residue field 𝐾.

(Geometrically:
1. 𝐹 = 𝐾(𝑌 ) for a smooth curve 𝑌 , and the embedding 𝐾(𝑇) ↪ 𝐹  corresponds to a connected

ramified cover 𝑌 → ℙ1
𝐾 , Galois with automorphism group 𝐺;

2. 𝑌  is geometrically irreducible, i.e. 𝑌 ×Spec 𝐾 Spec 𝐾 is irreducible;
3. 𝑌  has a 𝐾-point in the unramified fiber above 𝑡0. Since the cover is Galois, the whole fiber then

consists of 𝐾-points.)

Theorem 1.2. (Patching) Let 𝐺 be a finite group generated by two subgroups 𝐺1, 𝐺2 which have
realizations. Then, 𝐺 admits a realization.

This theorem was first proved by Harbater (1987) using rigid analytic geometry. The proof was later
rephrased by Haran and Völklein in a purely algebraic language [1, Proposition 4.3]. Their hope was
to get rid of the completeness hypothesis. Instead, they made it very clear at which precise point
completeness is used. We make a few remarks:
• Any finite group is generated by its cyclic subgroups. Thus, if all cyclic groups have realizations

(see [1, Lemma 4.5]), the inverse Galois problem is solved over 𝐾(𝑇), e.g. over ℚ𝑝(𝑇 ).
• This works over ℂ (seeing it as abstractly isomorphic to ℂ𝑝), removing the need to use Riemann’s

existence theorem to solve the inverse Galois problem over ℂ(𝑇 ). See also [2].
• Other consequences if 𝐾 is algebraically closed:

‣ every embedding problem over 𝐾(𝑇) is solvable [1, Theorem 4.6];
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‣ if 𝐾 is also countable, then the absolute Galois group of 𝐾(𝑇) is profinite free with countably
many generators [1, Cororally 4.7].

2.  Geometric Intuition

The whole point of algebraic patching is to avoid geometric arguments. However, since it adapts a
geometric proof, it is great to have a rough overview of what we are trying to mimic.

⇓

⇓

3.  Where geometry hides: convergent power series

Throughout, we use the convention of denoting the fields of fractions of a domain 𝑅 by �̂�.
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We define the ring:

𝐾{𝑇} ≔ {∑
𝑛≥0

𝑎𝑛𝑇 𝑛 ∈ 𝐾[[𝑇 ]] | 𝑎𝑛 → 0}.

(Geometrically: ring of “holomorphic functions” on a disk of radius 1 around 0)
Similarly, we obtain rings 𝐾{𝑇 −1} (“holomorphic functions on the disk around ∞”) and

𝐾{𝑇 , 𝑇 −1} (“holomorphic functions on the unit circle”; here, 𝑎𝑛 → 0 when |𝑛| → ∞). Note that
𝐾{𝑇} ∩ 𝐾{𝑇 −1} = 𝐾 in 𝐾{𝑇 , 𝑇 −1} (“holomorphic functions on ℙ1 are constant”, an ultrametric
form of Liouville’s theorem). We are going to use the corresponding fields of fractions (“meromorphic
functions”) 𝐾{𝑇}, ̂𝐾{𝑇 −1} and ̂𝐾{𝑇, 𝑇 −1}.

Lemma 3.1.  𝐾{𝑇} ∩ ̂𝐾{𝑇 −1} = 𝐾(𝑇 ) in ̂𝐾{𝑇, 𝑇 −1}.

(Proved using Weierstrass’ division theorem, which is a form of Euclidean division in rings of con-
vergent power series) (Geometrically: “meromorphic functions on ℙ1 are rational”, an ultrametric
form of Riemann’s existence theorem.)

Lemma 3.2. [3, Theorem 2.14] If ∑ 𝑎𝑛𝑇 𝑛 ∈ 𝐾((𝑇 )) is algebraic over 𝐾(𝑇), then there is a 𝑟 ∈
𝐾× such that ∑ 𝑎𝑛(𝑟𝑇 )𝑛 ∈ 𝐾{𝑇}.

(Idea: if the coefficients 𝑎𝑛 grow faster than any exponential, then no polynomial can cause the
required cancellations; the correct proof requires careful estimations and Newton polygons)

Lemma 3.3. [1, Corollary 2.3] (Cartan’s lemma) Let 𝑃 ∈ GL𝑛( ̂𝐾{𝑇 , 𝑇 −1}). Then, there are
matrices 𝑃1 ∈ GL𝑛(𝐾{𝑇}), 𝑃2 ∈ GL𝑛( ̂𝐾{𝑇 −1}) such that 𝑃 = 𝑃1𝑃2.

(The proof is quite computational, relying on a simple induction. Arbitrarily good approximations
may be computed with a simple algorithm.)

4.  Patching two extensions

Let 𝐺1, 𝐺2 be two subgroups of 𝐺 generating 𝐺. Let 𝐹1|𝐾(𝑇 ) be a realization of 𝐺1, 𝐹2|𝐾(𝑇 ) be a
realization of 𝐺2.

4.1.  Embedding the extensions in rings of power series

We reduce to the case where we have embeddings 𝐹1 ↪ ̂𝐾{𝑇 −1} and 𝐹2 ↪ 𝐾{𝑇}. As both cases are
symmetrical, we focus on proving that we can replace 𝐹2 with a subfield of 𝐾{𝑇}.

By hypothesis, there is an prime of degree 1 unramified in 𝐹2, so 𝐹2 ⊆ 𝐾((𝑇 − 𝑡0)). Consider
a primitive element 𝛽2 of 𝐹2, which we see as an element ∑ 𝑎𝑛(𝑇 − 𝑡0)

𝑛 ∈ 𝐾((𝑇 − 𝑡0)), algebraic
over 𝐾(𝑇). By Lemma 3.2, there is a 𝑟 ∈ 𝐾× such that ∑ 𝑎𝑛𝑟𝑛(𝑇 − 𝑡0)

𝑛 ∈ ̂𝐾{𝑇 − 𝑡0}. Making the
change of variables 𝑇 ′ = 𝑇−𝑡0

𝑟 , we have 𝛽2 = ∑ 𝑎𝑛(𝑇 − 𝑡0)
𝑛 = ∑ 𝑎𝑛𝑟𝑛(𝑇−𝑡0

𝑟 )
𝑛

= ∑ 𝑎𝑛𝑟𝑛(𝑇 ′)𝑛 ∈
𝐾{𝑇 ′}. Thus 𝐹2 embeds in 𝐾{𝑇 ′}.

(Equivalently, replace 𝐹2 by 𝐹2 = 𝐾(𝑇 )(𝛽2) where 𝛽2 ≔ ∑ 𝑎𝑛𝑟𝑛𝑇 𝑛 ∈ 𝐾{𝑇}.)
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We now assume 𝐹1 ⊆ ̂𝐾{𝑇 −1} and 𝐹2 ⊆ 𝐾{𝑇}. Note that 𝐹2 and ̂𝐾{𝑇 −1} are linearly disjoint as 𝐹2
is Galois over 𝐾(𝑇), included in 𝐾{𝑇} and ̂𝐾{𝑇 −1} ∩ 𝐾{𝑇} = 𝐾(𝑇 ). Hence, 𝐹2

̂𝐾{𝑇 −1} is a Galois
field extension of ̂𝐾{𝑇 −1} with Galois group 𝐺2, and symmetrically 𝐹1𝐾{𝑇}|𝐾{𝑇} is Galois with
group 𝐺1. The situation is summed up by the field diagram:

𝐺2 𝐺1

𝐺1 𝐺2

̂𝐾{𝑇, 𝑇 −1}

𝐹2
̂𝐾{𝑇 −1} 𝐹1𝐾{𝑇}

̂𝐾{𝑇 −1} 𝐾{𝑇}

𝐹1 𝐹2

𝐾(𝑇)

In what follows, we denote by 𝑖1 the isomorphism 𝐺1 ⥲ Gal(𝐹1𝐾{𝑇}|𝐾{𝑇}) and by 𝑖2 the isomor-
phism 𝐺2 ⥲ Gal(𝐹2

̂𝐾{𝑇 −1}| ̂𝐾{𝑇 −1}).

4.2.  Turning the 𝐺𝑖-realizations into étale 𝐺-algebras

We define the following 𝐹1𝐾{𝑇}-algebra (where both sum and multiplication are pointwise):

𝐹 ′
1 ≔ {maps 𝜓 : 𝐺 → 𝐹1𝐾{𝑇} | 𝜓(𝑔𝛼) = 𝑖1(𝛼−1)(𝜓(𝑔)) for all 𝑔 ∈ 𝐺, 𝛼 ∈ 𝐺1}.

The condition defining 𝐹 ′
1 implies that the elements 𝜓(𝑔) determine each other when they belong to

a same orbit under right multiplication by an element of 𝐺1. For instance, if one chooses represen-
tatives 𝜔1, …, 𝜔𝑟 of 𝐺/𝐺1, then an element of 𝐹 ′

1 is determined by the elements 𝜓(𝜔1), …, 𝜓(𝜔𝑟) ∈
𝐹1𝐾{𝑇}, as 𝜓(𝜔𝑖𝛼) = 𝑖1(𝛼−1)(𝜓(𝜔𝑖)). So, 𝐹 ′

1 is abstractly isomorphic to a product of [𝐺 : 𝐺1] copies
of 𝐹1𝐾{𝑇}. Its dimension over 𝐾{𝑇} is [𝐺 : 𝐺1]|𝐺1| = |𝐺|.
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Note that 𝐺 acts on 𝐹 ′
1 via the left action (ℎ.𝜓)(𝑔) = 𝜓(ℎ−1𝑔). The fixed subalgebra 𝐹 ′

1
𝐺 of 𝐹 ′

1
under 𝐺 corresponds to constant maps 𝜓 : 𝐺 → 𝐹1𝐾{𝑇}, identified with their value at 1, and satis-
fying the relation 𝜓 = 𝑖1(𝛼−1)(𝜓) for all 𝛼 ∈ 𝐺1. Since 𝐹1𝐾{𝑇}|𝐾{𝑇} is Galois with group 𝑖1(𝐺1),
it follows that 𝐹 ′

1
𝐺1 can be identified with 𝐾{𝑇}.

We define symmetrically the following 𝐹2
̂𝐾{𝑇 −1}-algebra:

𝐹 ′
2 ≔ {maps 𝜓 : 𝐺 → 𝐹2

̂𝐾{𝑇 −1} | 𝜓(𝑔𝛽) = 𝑖2(𝛽−1)(𝜓(𝑔)) for all 𝑔 ∈ 𝐺, 𝛽 ∈ 𝐺2}.

4.3.  The actual patching step

Finally, we define the algebra 𝐹 ≔ 𝐹 ′
1 ∩ 𝐹 ′

2, where the intersection is taken in the algebra of all maps
𝐺 → ̂𝐾{𝑇 , 𝑇 −1}:

𝐹 = {maps 𝜓 : 𝐺 → 𝐹1𝐾{𝑇} ∩ 𝐹2
̂𝐾{𝑇 −1} |

𝜓(𝑔𝛼) = 𝑖1(𝛼−1)(𝜓(𝑔)) for all 𝑔 ∈ 𝐺, 𝛼 ∈ 𝐺1

𝜓(𝑔𝛽) = 𝑖2(𝛽−1)(𝜓(𝑔)) for all 𝑔 ∈ 𝐺, 𝛽 ∈ 𝐺2
}.

Since 𝐺1 and 𝐺2 generate 𝐺, such a map is determined by the image of 1: this lets us see 𝐹  as a
subalgebra of 𝐹1𝐾{𝑇} ∩ 𝐹2

̂𝐾{𝑇 −1}, specifically the fixed subfield of 𝐹1𝐾{𝑇} ∩ 𝐹2
̂𝐾{𝑇 −1} under

the set of all automorphisms 𝑖1(𝛼1) ∘ 𝑖2(𝛽1) ∘ 𝑖1(𝛼2) ∘ 𝑖2(𝛽2) ∘ … ∘ 𝑖1(𝛼𝑛) ∘ 𝑖2(𝛽𝑛) where 𝛼𝑖 ∈ 𝐺1, 𝛽𝑖 ∈
𝐺2, and the product 𝛼1𝛽1…𝛼𝑛𝛽𝑛 evaluates to 1 in 𝐺.² In particular, 𝐹  is a field.

²This can be written in terms of the free product 𝐺1 ⋆ 𝐺2, which has a surjective “product” morphism 𝜑 to 𝐺
induced by the inclusions in 𝐺, and a morphism 𝑖1 ⋆ 𝑖2 to Aut(𝐹1𝐾{𝑇} ∩ 𝐹2

̂𝐾{𝑇 −1}). Then, 𝐹  is the fixed subfield
of 𝐹1𝐾{𝑇} ∩ 𝐹2

̂𝐾{𝑇 −1} under (𝑖1 ⋆ 𝑖2)(ker 𝜑).

The action of 𝐺 on maps 𝜓 : 𝐺 → ̂𝐾{𝑇 , 𝑇 −1} (defined by (ℎ.𝜓)(𝑔) = 𝜓(ℎ−1𝑔)) restricts to 𝐹 =
𝐹 ′

1 ∩ 𝐹 ′
2. The fixed subfield is 𝐹𝐺 = 𝐹 ′

1
𝐺 ∩ 𝐹 ′

2
𝐺 = 𝐾{𝑇} ∩ ̂𝐾{𝑇 −1} = 𝐾(𝑇 ). In particular, 𝐹  is a

finite Galois extension of 𝐾(𝑇), whose Galois group is a quotient of 𝐺.

Remark 4.3.1.  As of now, we did not use completeness!

𝐺2 𝐺1

(𝑖1 ⋆ 𝑖2)(ker 𝜑)

𝐺1
?

𝐺2

̂𝐾{𝑇, 𝑇 −1}

𝐹2
̂𝐾{𝑇 −1} 𝐹1𝐾{𝑇}

̂𝐾{𝑇 −1} 𝐹1𝐾{𝑇} ∩ 𝐹2
̂𝐾{𝑇 −1} 𝐾{𝑇}

𝐹1 𝐹 𝐹2

𝐾(𝑇)

4.4.  Constructing a basis of 𝐹

The only thing which is missing is a “lower bound” on 𝐹 , i.e., an equality of dimensions [𝐹 : 𝐾(𝑇 )] =
|𝐺|. To prove this equality, we are going to construct a basis of 𝐹  over 𝐾(𝑇).
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(Small tool: If 𝐿 is a field and 𝑉  is a 𝐿-vector space of dimension 𝑛, there is a (fully coordinate-
free) simply transitive left action of GL𝑛(𝐿) on the set of 𝐿-bases of 𝑉 , given by (𝑀.ℬ)𝑖 = ∑𝑗 𝑀𝑖𝑗ℬ𝑗,
i.e. 𝑀.ℬ is the unique basis of 𝑉  such that the transition matrix between ℬ and 𝑀.ℬ is 𝑀 .)

Choose a 𝐾{𝑇}-basis ℬ1 of 𝐹 ′
1 and a ̂𝐾{𝑇 −1}-basis ℬ2 of 𝐹 ′

2.³ Since these spaces have dimension
|𝐺|, both ℬ1 and ℬ2 are bases (after extension of scalars to ̂𝐾{𝑇, 𝑇 −1}) of the ̂𝐾{𝑇, 𝑇 −1}-vector space

³Let 𝑖 ∈ {1, 2}. Choosing a system of representatives of 𝐺/𝐺𝑖 and a primitive element 𝛽𝑖 of 𝐹𝑖, we can write very
explicit bases, for which the transition matrix in the canonical basis (𝟙𝑔)𝑔∈𝐺

 is a block-diagonal matrix of size |𝐺| with
[𝐺 : 𝐺𝑖] diagonal blocks which are Vandermonde matrices of size |𝐺𝑖| involving the conjugates of 𝛽𝑖.

of all maps 𝐺 → ̂𝐾{𝑇 , 𝑇 −1}, of dimension |𝐺|. Form the transition matrix 𝑃 ∈ GL|𝐺|( ̂𝐾{𝑇 , 𝑇 −1})
between these two bases, so that ℬ1 = 𝑃.ℬ2, and use Lemma 3.3 (this uses completeness!) to de-
compose 𝑃  as a product 𝑃1𝑃2 with 𝑃1 ∈ GL|𝐺|(𝐾{𝑇}), 𝑃2 ∈ GL|𝐺|( ̂𝐾{𝑇 −1}). Now, define the basis
ℬ = 𝑃2.ℬ2 of 𝐹 ′

2. Note that ℬ is also a basis of 𝐹 ′
1 since ℬ = 𝑃−1

1 .ℬ1 (over ̂𝐾{𝑇, 𝑇 −1}, this simply
follows from 𝑃1.ℬ = 𝑃1𝑃2.ℬ2 = 𝑃.ℬ2 = ℬ1). Therefore, the basis ℬ is contained in 𝐹 = 𝐹 ′

1 ∩ 𝐹 ′
2,

which proves that [𝐹 : 𝐾(𝑇 )] = |ℬ| = |𝐺|.

4.5.  Ramification in the patched extension

4.5.1. Ramified primes of the patched extension.

Assume 𝐹1, 𝐹2 are unramified above some place (𝑇 − 𝑡0), i.e. they embed into 𝐾((𝑇 − 𝑡0)). The cases
𝑣(𝑡0) ≥ 0 and 𝑣(𝑡0) ≤ 0 are symmetrical, thus we assume 𝑣(𝑡0) ≥ 0. Then, the ultrametric inequality
implies 𝐾{𝑇} = ̂𝐾{𝑇 − 𝑡0} ⊆ 𝐾((𝑇 − 𝑡0)), and thus 𝐹1𝐾{𝑇} embeds into 𝐾((𝑇 − 𝑡0)) and finally
𝐹 ⊆ 𝐹1𝐾{𝑇} embeds into 𝐾((𝑇 − 𝑡0)). Thus, 𝐹|𝐾(𝑇 ) is unramified above 𝑡0.

Remark 4.5.1.1.  More generally, 𝐹𝐾{𝑇} = 𝐹1𝐾{𝑇} and 𝐹 ̂𝐾{𝑇 −1} = 𝐹2
̂𝐾{𝑇 −1}. The decompo-

sition subgroups of 𝐺 at a given place (𝑇 − 𝑥) are those of 𝐹1 or 𝐹2 (depending on the sign of 𝑣(𝑥)).

4.5.2. Existence of an unramified prime of degree 1.

Let 𝑥 ∈ 𝐾 with 𝑣(𝑥) = 0 and such that (𝑇 − 𝑥) is unramified in 𝐹  (this is the case for all but fi-
nitely many choices of 𝑥). The evaluation morphism: 𝑒𝑥 : {𝐾{𝑇,𝑇 −1}→ 𝐾

∑ 𝑎𝑛𝑇 𝑛 → ∑ 𝑎𝑛𝑥𝑛 is well-defined, surjective,
and has kernel (𝑇 − 𝑥)𝐾{𝑇 , 𝑇 −1} (Weierstrass’ division theorem). So, the (discrete) (𝑇 − 𝑥)-adic
valuation on ̂𝐾{𝑇, 𝑇 −1} has residue field 𝐾. The ring of elements of nonnegative valuation is the
localization 𝐾{𝑇 , 𝑇 −1}

(𝑇−𝑥)
.

The restriction of the (𝑇 − 𝑥)-adic valuation to 𝐹  is a discrete valuation 𝑣′ lying above the
unramified prime (𝑇 − 𝑥) of 𝐾(𝑇). The ring 𝐹(𝑣′) of elements 𝑥 ∈ 𝐹  with 𝑣′(𝑥) ≥ 0 is contained in
𝐾{𝑇 , 𝑇 −1}

(𝑇−𝑥)
, and we get a composite map:

𝐹(𝑣′) ↪ 𝐾{𝑇 , 𝑇 −1}
(𝑇−𝑥)

↠ 𝐾{𝑇 , 𝑇 −1}
(𝑇−𝑥)

/(𝑇 − 𝑥)𝐾{𝑇 , 𝑇 −1}
(𝑇−𝑥)

≃ 𝐾.

This map is surjective as its restriction to 𝐾[𝑇 ](𝑇−𝑥) is 𝐾[𝑇 ](𝑇−𝑥) ↠ 𝐾[𝑇 ]/(𝑇 − 𝑥)𝐾[𝑇 ] ≃ 𝐾. This
means that 𝑣′ is an unramified place of 𝐹  with residue field 𝐾.
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