INTRODUCTION TO ALGEBRAIC PATCHING

Béranger Seguin®

Abstract: Using the language and the tools of rigid analytic geometry, Harbater (1987) has defined
a “patching operation” which can be used to solve the inverse Galois problem over fields like QP(T)
or F (X))(T). Later, Haran and Vélklein (1996) rephrased this construction in a purely algebraic
language, replacing all geometric arguments with (almost entirely) explicit constructions. Our goal
is to present their proof.

In the whole document, we fix a field K equipped with a nontrivial ultrametric valuation v for which
it is complete. For example: Q,,, any p-adic field, F (7)), K((T')) for any field K.

The main reference is [1]. I am greatly indebted to Pierre Débes for explaining this proof to me.
His explanations have directly inspired mine.

1. STATEMENT
To make things simple, we take the following definition of “realization”:

Definition 1.1. A realization of a finite group G is a field extension F|K(T) such that:

1. F|K(T) is Galois with Galois group isomorphic to G;

2. F|K(T) is regular, i.e. FNK = K;

3. F has an unramified prime of degree 1, i.e. for some ¢, € K, the canonical embedding K(T') <
K(T —t,)) extends into an embedding F C K (T —t,)). The (T — t,)-adic valuation of K (7T —
ty)) then restricts to a place v of F above (T —t,), with F, ~ K(T — t,)) and residue field K.

(Geometrically:

1. F=K(Y) for a smooth curve Y, and the embedding K(T') < F corresponds to a connected
ramified cover Y — Pk, Galois with automorphism group G;

2. Y is geometrically irreducible, i.e. ¥ Xgp x Spec K is irreducible;

3. Y has a K-point in the unramified fiber above t,. Since the cover is Galois, the whole fiber then
consists of K-points.)

Theorem 1.2. (Patching) Let G be a finite group generated by two subgroups G;, G, which have
realizations. Then, G admits a realization.

This theorem was first proved by Harbater (1987) using rigid analytic geometry. The proof was later
rephrased by Haran and Vélklein in a purely algebraic language [1, Proposition 4.3]. Their hope was
to get rid of the completeness hypothesis. Instead, they made it very clear at which precise point
completeness is used. We make a few remarks:
e Any finite group is generated by its cyclic subgroups. Thus, if all cyclic groups have realizations
(see [1, Lemma 4.5]), the inverse Galois problem is solved over K(T'), e.g. over Q,(T).
o This works over C (seeing it as abstractly isomorphic to C,), removing the need to use Riemann’s
existence theorem to solve the inverse Galois problem over C(T'). See also [2].
e Other consequences if K is algebraically closed:
» every embedding problem over K(T') is solvable [1, Theorem 4.6];
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» if K is also countable, then the absolute Galois group of K (T') is profinite free with countably
many generators [1, Cororally 4.7].

2. GEOMETRIC INTUITION

The whole point of algebraic patching is to avoid geometric arguments. However, since it adapts a
geometric proof, it is great to have a rough overview of what we are trying to mimic.

3. WHERE GEOMETRY HIDES: CONVERGENT POWER SERIES

Throughout, we use the convention of denoting the fields of fractions of a domain R by R.



We define the ring:

K{T} := {Z%T" € K[[T]]

n>0

an—>0}.

(Geometrically: ring of “holomorphic functions” on a disk of radius 1 around 0)

Similarly, we obtain rings K{T'} (“holomorphic functions on the disk around oo”) and
K{T,T7'} (“holomorphic functions on the unit circle”; here, a, — 0 when |n| — 00). Note that
K{T}nK{T™'} =K in K{T,T7'} (“holomorphic functions on P! are constant”, an ultrametric
form of Liouville’s theorem). We are going to use the corresponding fields of fractions (“meromorphic
functions”) K{T}, K{T~'} and K{T,T-1}.

Lemma 3.1. K{T}NK{T '} = K(T) in K{T,T}.

(Proved using Weierstrass’ division theorem, which is a form of Euclidean division in rings of con-
vergent power series) (Geometrically: “meromorphic functions on P! are rational”, an ultrametric
form of Riemann’s existence theorem.)

Lemma 3.2.[3, Theorem 2.14] If Y a,T™ € K(T)) is algebraic over K(T'), then there is a 7 €
K* such that Y a,(rT)" € K{T}.

(Idea: if the coefficients a,, grow faster than any exponential, then no polynomial can cause the
required cancellations; the correct proof requires careful estimations and Newton polygons)

Lemma 3.3.[1, Corollary 2.3] (Cartan’s lemma) Let P € GL,, (K{ﬁ—l}) Then, there are
matrices P, € C;Ln(f{{?}),za2 €GL, (K’{’:Fl}) such that P = P, P,.

(The proof is quite computational, relying on a simple induction. Arbitrarily good approximations
may be computed with a simple algorithm.)

4. PATCHING TWO EXTENSIONS

Let Gy, G5 be two subgroups of G generating G. Let F}|K(T) be a realization of G, F5|K(T) be a
realization of G,.

4.1. Embedding the extensions in rings of power series

We reduce to the case where we have embeddings F; < Kj[‘ltl} and Fi, < @ As both cases are
symmetrical, we focus on proving that we can replace F, with a subfield of K{T'}.

By hypothesis, there is an prime of degree 1 unramified in F,, so F, C K(T —t,)). Consider
a primitive element B, of F,, which we see as an element ) a, (T —ty)" € K(T —t,)), algebraic
over K(T). By Lemma 3.2, there is a r € K* such that > a,r"(T —t,)" € K{T — t,}. Making the

change of variables T = T;to, we have By =Y a, (T —t,)" = Zanr”(@)n =>a,r"(T")" €

K{T’}. Thus F, embeds in K{I"}. B B -
(Equivalently, replace F, by F, = K(T) (ﬁg) where By := > a,r"T™ € K{T}.)
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We now assume F; C K{/Cl—’tl} and F, C K/{?ﬂote that F, and K{/I—’tl} are linearly disjoint as Fy
is Galois over K (T'), included in K{T'} and K{T-'} N K{T} = K(T). Hence, F, K{T—'} is a Galois
field extension of K{T~'} with Galois group G,, and symmetrically Fy K{T}|K{T'} is Galois with
group G;. The situation is summed up by the field diagram:

K{T,T-'}

VRN

F,K{T1} F,K{T}

In what follows, we denote by i; the isomorphism G; =% Gal(FJ?{THIZ{?}) and by iy the isomor-
phism Gy ~ Gal(FzK{T—1}|K{T—1}>.

4.2. Turning the G,-realizations into étale G-algebras
We define the following F} K{T }-algebra (where both sum and multiplication are pointwise):
F| = {maps ¥:G— F,K{T} ‘ P(ga) =i, (a ) (Y(g)) for all g € G, a € Gl}.

The condition defining F] implies that the elements 1(g) determine each other when they belong to
a same orbit under right multiplication by an element of G;. For instance, if one chooses represen-
tatives wy,...,w, of G/Gy, then an element of Fy is determined by the elements ¢(w,), ..., %(w,) €

FyKA{T}, as ¢(w;a) = iy (a1 (¥(w;))- So, FY is abstractly isomorphic to a product of [G : G;] copies
of Fy K{T}. Its dimension over K{T'} is [G : G1]|G;| = |G].



Note that G acts on Fy via the left action (h.¢))(g) = ¥(h~'g). The fixed subalgebra F| Y of Fy
under G corresponds to constant maps 1 : G — F} K{T'}, identified with their value at 1, and satis-
fying the relation 9 = i; (o) (%) for all « € G,. Since F,K{TY K{T} is Galois with group i,(G,),
it follows that F{°* can be identified with K {T}.

We define symmetrically the following F, K {T—!}-algebra:

Fj = {maps ¥: G — FK{T1) | P(gB) = iy(B ) ((g)) for all g € G, B € Gz}.

4.3. The actual patching step

Finally, we define the algebra F':= F] N F,, where the intersection is taken in the algebra of all maps
G— K{T,T'}:

Y(ga) =i (a"1)(P(g)) for all g € G,a € Gy
P(gB) =iy (B-1)(%(g)) forall ge G, B € G, |

F = {maps Vv:G— FK{T}NF,K{T-'}

Since G; and G, generate G, such a map is determined by the image of 1: this lets us see F' as a
subalgebra of F} K {T} NF,K {T 1}, specifically the fixed subfield of F} K {T} NF,K {T 11 under
the set of all automorphisms i, () 0 i5(81) 0 i1 (y) 0 i5(By) o ... 04y (a,,) 0 i5(S,,) where o; € G4, B; €
G5, and the product oy ;... 3, evaluates to 1 in G.? In particular, F is a field.

The action of G on maps ¢ : G — K{T, T~ 1} (defined by (h.1h)(g) = 1(h™'g)) restricts to F =
F/ N F}. The fixed subfield is FC = F{° n F}¢ = K{T} I"IK{T 1} = K(T). In particular, F' is a
finite Galois extension of K(T'), whose Galois group is a quotient of G.

Remark 4.3.1. As of now, we did not use completeness!

K{T, T}

FyK{T~ 1}/ \ F K{T}
G, \ / Gy
K{T F,K{T} N F,K{T- '} K{T}

(11 * i5)(ker ¢)
F, F F.
K(T)

4.4. Constructing a basis of F

The only thing which is missing is a “lower bound” on F, i.e., an equality of dimensions [F' : K(T')] =
|G|. To prove this equality, we are going to construct a basis of F' over K(T').

2This can be written in terms of the free product G; * G4, which has a surjective “product” morphism ¢ to G
induced by the inclusions in G, and a morphism i; * i, to Aut (FlK{T} n FZK{Tfl}). Then, F is the fixed subfield

of FyK{T} N F,K{T '} under (i, » i,)(ker ).




(Small tool: If L is a field and V is a L-vector space of dimension n, there is a (fully coordinate—
free) simply transitive left action of GL,, (L) on the set of L-bases of V, given by (M.B), = Z
i.e. M.B is the unique basis of V' such that the transition matrix between B and M. B is M. )

Choose a K {T }-basis B, of F| and a K {T 1}-basis B, of Fy.? Since these spaces have dimension
|G|, both B, and B, are bases (after extension of scalars to K{T',T'}) of the K {T T—1}-vector space
of all maps G — K{T T-1}, of dimension |G|. Form the transition matrix P € GLg (K{T T- 1})
between these two bases, so that B; = P.B,, and use Lemma 3.3 (this uses completeness!) to de-
compose P as a product P, P, with P; € GLg, (R’TT}) , Py € GLg (Kf{’i’tl}) Now, define the basis
B = P,.B, of Fj. Note that B is also a basis of F since B = P;!.B; (over K{ﬁ—l}, this simply
follows from P,.B = P,P,.B, = P.B, = B;). Therefore, the basis B is contained in F = F{ N F},
which proves that [F': K(T')] = |B| = |G]|.

ij J’

4.5. Ramification in the patched extension
4.5.1. Ramified primes of the patched extension.

Assume F}, F, are unramified above some place (T — t,), i.e. they embed into K((T — t,)). The cases

v(ty) > 0 and v(ty) < 0 are symmetrical, thus we assume v(ty) > 0. Then, the ultrametric inequality
implies ﬂ} K{T —to} CK(T —ty)), and thus F; K{T} embeds into K(T —t,)) and finally
F C F,K{T} embeds into K (T — t)). Thus, F|K(T) is unramified above t.

Remark 4.5.1.1. More generally, FK{T} = FII{{?} and FKﬁtl} = FZKTFl}. The decompo-
sition subgroups of G at a given place (I' — ) are those of F} or F, (depending on the sign of v(z)).

4.5.2. Existence of an unramified prime of degree 1.

Let z € K with v(z) =0 and such that (T'— ) is unramified in F' (this is the case for all but fi-
K{T,T-1}» K

>a, T —=> a,z™
and has kernel (T —z)K{T,T~'} (Weierstrass’ division theorem). So, the (discrete) (T — x)-adic
valuation on K {T T-1} has res1due field K. The ring of elements of nonnegative valuation is the
localization K{T, Tfl}(T_m).

The restriction of the (T' — z)-adic valuation to F' is a discrete valuation v" lying above the
unramified prime (T'— z) of K(T). The ring Fi,/, of elements z € F' with v'(x) > 0 is contained in
KA{T, T_l}(fo)’ and we get a composite map:

nitely many choices of z). The evaluation morphism: e, is well-defined, surjective,

-1 -1 -1 ~
F(v’) — K{T,T }(Tfa:) —» K{T,T }(T,x)/(T_x)K{T’T }(Tfa:) - K

This map is surjective as its restriction to K[T](Tﬂ:) is K[T](fo) — K[T]/(T — z)K|[T] ~ K. This

means that v’ is an unramified place of F' with residue field K.
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