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Part |.

Motivation and context



Galois theory and its historical role

Classical problem: study of (polynomial) equations (e.g. trisection)
Early 19th century: breakthroughs by Abel, Galois, ...

Key objects introduced by Galois:

- field extensions: different number systems needed to solve various equations
- Galois groups:
measures the symmetries of an equation

more complicated Galois group ~ harder to solve

No general solution for equations of degree > 5

~+ Galois shows that some "complicated enough” groups are Galois groups



Inverse/counting problems in Galois theory

Natural question:
Is every finite group the Galois group of a polynomial with rational coefficients?

Inverse Galois Problem (IGP)
( Is every finite group isomorphic to the Galois group of a Galois extension of Q7 )

Studied by Hilbert (=~ 1892), Noether (~ 1918), Shafarevitch (= 1954).



The function field case

The regular inverse Galois problem (RIGP)

Is every finite group isomorphic to the Galois group of a Galois
extension F | Q(T) with FNQ = Q?

Hilbert’s irreducibility theorem: For a given group G, RIGP = IGP



The function field case

The regular inverse Galois problem (RIGP)

Is every finite group isomorphic to the Galois group of a Galois
extension F | Q(T) with FNQ = Q?

Hilbert’s irreducibility theorem: For a given group G, RIGP = IGP

Function fields: extensions are understood geometrically as covers of the projective line



Covers and field extensions of function fields

A series of equivalences:

{extensions of K(T)} N {ramiﬁed connected covers of P}(}

with Galois group G with monodromy group G



Covers and field extensions of function fields

A series of equivalences:

{extensions of K(T)} N {ramiﬁed connected covers of P}(}

with Galois group G with monodromy group G

If K is algebraically closed of characteristic O, further equivalences:

tuples (g, ..., 8n) € G"

unramified outside p ~ o~ where g1--- g, =1

{t, ...t}

Here a G-cover is a ramified Galois cover (algebraic or topological) with an action of G,

G- f P
covers or Iy {topologica| G-covers of }

P! th, o t
(©)\ it ta} (modulo conjugacy)

such that G acts freely/transitively on the (geometric) points of any unramified fiber.



Covers and field extensions of function fields

A series of equivalences:

{extensions of K(T)} N {ramiﬁed connected covers of IPﬂK}

with Galois group G with monodromy group G
If K is algebraically closed of characteristic O, further equivalences:

tuples (g, ..., 8n) € G"

unramified outside p ~ o~ where g1--- g, =1

{t1, ... ta}

Here a G-cover is a ramified Galois cover (algebraic or topological) with an action of G,

G- f P
covers or Iy {topologicaﬂ G-covers of }

P! th, o t
(©)\ it ta} (modulo conjugacy)

such that G acts freely/transitively on the (geometric) points of any unramified fiber.

( The regular inverse problem over K )

s every finite group the automorphism group of a connected cover of P! over K?




Fields of definition of covers

Over C and Q ~ Yes by topological arguments!

To find G-covers of IP’J@, find G-covers of IP’]@ which are invariant
under the Galois action of Gp = Gal(Q | Q)

Works when G is centerless (e.g. G is simple noncyclic)



Fields of definition of covers

Over C and Q ~ Yes by topological arguments!

To find G-covers of IP’J@, find G-covers of IP’]@ which are invariant
under the Galois action of Gp = Gal(Q | Q)

Works when G is centerless (e.g. G is simple noncyclic)

Example: rigidity

Find properties invariant under the Galois action and prove that they uniquely

characterize a given cover (e.g. conjugacy classes of monodromy elements)

Thompson (1984): the Monster group is a Galois group over Q



Geometry

Extensions of

Q(T)

Topological covers Ramified
of the punctured «—s algebraic

1
covers of IP’@

sphere

Tuples of elements of a group
Dessins d’enfants

Combinatorics

Covers: a language between geometry and arithmetic

Arithmetic
Extensions of Extensions
Q(T) of Q
Ramified
algebraic

covers of ]P’(l@
e Inverse Galois problem:
Is every finite group the Galois group of an
extension of Q7
e Malle conjecture:

Count extensions with a given Galois group
by discriminant.



Hurwitz moduli spaces

A further geometrization of the problem: Hurwitz spaces

- moduli spaces for G-covers of P! ramified at n points: each point is a G-cover
- itself a cover of the space of configurations Conf, of n points of P'(C).
- variants:
Hurwitz space of marked G-covers
subspace of connected G-covers, or covers of monodromy group H
possibility to fix the monodromy classes



Hurwitz moduli spaces

A further geometrization of the problem: Hurwitz spaces

- moduli spaces for G-covers of P! ramified at n points: each point is a G-cover
- itself a cover of the space of configurations Conf, of n points of P'(C).
- variants:
Hurwitz space of marked G-covers
subspace of connected G-covers, or covers of monodromy group H
possibility to fix the monodromy classes

The Hurwitz space is the analytification (C-points) of a scheme over Z[I%I]:

Q-points of _ G-covers _ extensions of Q(T) extensions of
the Hurwitz scheme  defined over Q  with Galois group G with Galois group G

Turns RIGP into a Diophantine problem: we look for rational points on Hurwitz spaces



Part II.
Connected components of Hurwitz
spaces and their asymptotics



Why count components?

G a group, ¢ a conjugacy class which generates G.

Since 2009, Ellenberg, Tran, Venkatesh, Westerland:

Study extensions - Count F4-points - Homology of Hurwitz spaces
of Fo(T) of Hurwitz spaces ~ + Grothendieck-Lefschetz trace formula

EVW 2012: as the number of branch points grows, the homology is eventually stable
when: for all subgroups H C G, if c N H is nonempty, then it is a conjugacy class of H.



Why count components?

G a group, ¢ a conjugacy class which generates G.

Since 2009, Ellenberg, Tran, Venkatesh, Westerland:

Study extensions - Count F4-points - Homology of Hurwitz spaces
of Fo(T) of Hurwitz spaces ~ + Grothendieck-Lefschetz trace formula

EVW 2012: as the number of branch points grows, the homology is eventually stable
when: for all subgroups H C G, if c N H is nonempty, then it is a conjugacy class of H.

Count components (i.e. Hp) in the general case:

cNH= L L dQ(H)—H

Q(H) is the splitting number of H. What happens if Q(H) > 07?



The gluing operation

Two marked G-covers can be glued (over C or Q)
# of branch points n n — n+n'
Monodromy group H H’ — (H,H")

Monodromy elements | (gi....gn) (g .8y) — (8. 808 - 8y)

~ gluing operation at the level of components



The gluing operation

Two marked G-covers can be glued (over C or Q)
# of branch points n n — n+n'

Monodromy group H H’ — (H,H")
Monodromy elements | (gi....gn) (g .8y) — (8. 808 - 8y)

~ gluing operation at the level of components

~~ a monoid of components (and its associated monoid ring over a field k)

( Count components of Hurwitz spaces = study the Hilbert function of that ring. )




General philosophy: asymptotical behaviour

Why is this easier?

( Guiding principle )

Many branch points ~~ the monoid of components behaves like a group.

We can reason as if components had “inverses”: very useful for counting.

EVW-Wood describe the corresponding group in terms of group homology.



Counting results

r Theorem 4.3.1

The count of components of the Hurwitz space of marked G-covers of the
affine line A'(C), branched at n points, with monodromy elements belonging to

¢ and monodromy group H, is asymptotically equivalent to:

[HIHa(H. ) aem)
|| Q(H)!




Counting results

r Theorem 4.3.1

The count of components of the Hurwitz space of marked G-covers of the

affine line A'(C), branched at n points, with monodromy elements belonging to

¢ and monodromy group H, is asymptotically equivalent to:

A B (H. )| g
2] Q(H)!

If the affine line is replaced by the projective line P'(C), an average order of

this count is given by:

[Fe(H. )| _am
|He| Q(H)! '




Overview of the argument

Wsion 1

Count the number of ways that the conjugacy classes of H included in cN H can

be attributed to n different branch points. Asymptotically:
Q)
Q(H)!




Overview of the argument

Wsien 1

Count the number of ways that the conjugacy classes of H included in cN H can

be attributed to n different branch points. Asymptotically:

HH)

Q(H)!
9 * y

AETD X

Show that for most choices, there are exactly:

|H| |Ha(H. )|
|H®|

components (in the affine case).




The case of symmetric groups

If G = &4, c = {transpositions} (classical case of Luroth/Clebsch/Hurwitz):

- A presentation of the ring of components (Theorem 6.1.1):

Rpi(c)(Sa, €) =~ k[()(lf)1§i</§d]
o (XX — XX XiXie = XiXihsi<j<ksd’




The case of symmetric groups

If G = &4, c = {transpositions} (classical case of Luroth/Clebsch/Hurwitz):

- A presentation of the ring of components (Theorem 6.1.1)
- The Hilbert function is a polynomial of degree d’ = |d/2| and leading term
29(d")(d" —1)!

d d! s L
<1 + 3> mn if d is odd

if d is even



The case of symmetric groups

If G = &4, c = {transpositions} (classical case of Luroth/Clebsch/Hurwitz):

- A presentation of the ring of components (Theorem 6.1.1)
- The Hilbert function is a polynomial of degree d’ = |d/2| and leading term
29(d")(d" —1)!

d d! s L
<1 -+ 3> mn if dis odd

- A "visual” proof of irreducibility using multigraphs:

1

N =\

22— n 2 n

Braids are interpreted as operations on these graphs (7-I'-V-equivalence).

if d is even



The algebraic geometry of the ring of components 1/2

The ring of components for P'(C) is commutative ~+ geometry

- Geometrical takeaways

- The spectrum is stratified in a family of subschemes ~(H) for subgroups H

\ Y,

~» An invitation to the study of the geometry of the homology of Hurwitz spaces.
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~+ the Krull dimension of the ring of components is the maximal splitting
number +1
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The algebraic geometry of the ring of components 1/2

The ring of components for P'(C) is commutative ~+ geometry

- Geometrical takeaways

- The spectrum is stratified in a family of subschemes ~(H) for subgroups H
- The Krull dimension of v(H) is Q(H) + 1.

~+ the Krull dimension of the ring of components is the maximal splitting
number +1

- In specific situations (e.g. symmetric groups) we can describe the strata
(and hence the spectrum) fully

J

~» An invitation to the study of the geometry of the homology of Hurwitz spaces.



The algebraic geometry of the ring of components 2/2

Unsolved questions
r 9 N\

- Which y(H') intersect the closure of v(H)? (necessarily H' C H)

- How does the spectrum compare to that of the group ring?

- What can be done with the (braided-commutative) ring for covers of

A'(C)? with higher homology?
\ Y,

Drawings for symmetric groups (d = 4, 6):

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

X X X X

{1,2,3,4} 34 {24 {23}

X

{1,2y  {1,3} {1,4}




Part Il

Fields of definition of connected
components of Hurwitz spaces



Fields of definition

A rational point of a Hurwitz space has to lie in a component defined over Q.

~+ Weak form of RIGP: Find components defined over Q.

(e )

Understand/count components defined over Q.

Previous work: Débes-Emsalem, Cau.



Fields of definition and concatenation

Are the components obtained by gluing components defined over Q also
defined over Q7

Gluing is a transcendental operation... Too good to be true?



Fields of definition and concatenation

Are the components obtained by gluing components defined over Q also
defined over Q7

Gluing is a transcendental operation... Too good to be true?

An important starting point:

¥ theorem (Cau) | |

If x and y are components defined over Q, the set of "all possible gluings”™:

YT | () € G}

is globally defined over Q. If this is a singleton, xy is defined over Q.




A rigidity criterion for rationality

r Theorem 8.1.2, i) and ii)

Let x, y be components defined over K. Denote by Hj, H, their respective
monodromy groups, and let H = (Hy, Hz). Then:

i) If HHH, = H, then xy is defined over K.

ii) If every conjugacy class of H which appears in xy appears at least M times

(for some integer M depending only on the group G), then xy is defined
over K.
\

~\

Another result: the Gg-action on components is determined by its action of
components with few branch points (Prop 8.2.8). Unsurprising in the light of Belyi’'s
theorem/faithfulness of the Galois action on dessins d’enfants (covers with three
branch points). But here we have fixed group/conjugacy classes.



Patching components over a number field

A different result that does not follow from a rigidity principle/Cau’s theorem:

Theorem 8.1.2, iii)

Let x, y be components defined over K. Denote by H;, H, their respective

monodromy groups, and let H = (H, H,). Then there is an element v € H such
that H = <H1, H;> and such that xy” is defined over K.




Patching components over a number field

Theorem 8.1.2, iii)

Let x, y be components defined over K. Denote by H;, H, their respective

monodromy groups, and let H = (H;, H>). Then there is an element v € H such
that H = <H1, Hg> and such that xy” is defined over K.

Sketch of proof.

- Construct a sequence Kj, K3, ... of linearly disjoint extensions of K such that there
are marked covers f;, g; defined over K; in the components x, y.
This is accomplished by using Hilbert’s irreducibility theorem repeatedly on Hurwitz
spaces themselves.



Patching components over a number field

Theorem 8.1.2, iii)

Let x, y be components defined over K. Denote by H;, H, their respective
monodromy groups, and let H = (H;, H>). Then there is an element v € H such
that H = <H1, Hg> and such that xy” is defined over K.

Sketch of proof.

- Construct a sequence Kj, K3, ... of linearly disjoint extensions of K such that there
are marked covers f;, g; defined over K; in the components x, y.

- Patch f;, gi over the complete valued field Ki((X)). A result of Cau ensures that the
patched cover lies in a component ¢; of the form xTy7.



Patching components over a number field

Theorem 8.1.2, iii)

Let x, y be components defined over K. Denote by H;, H, their respective
monodromy groups, and let H = (H;, H>). Then there is an element v € H such
that H = <H1, Hg> and such that xy” is defined over K.

Sketch of proof.

- Construct a sequence Kj, K3, ... of linearly disjoint extensions of K such that there
are marked covers f;, g; defined over K; in the components x, y.

- Patch f;, gi over the complete valued field Ki((X)). A result of Cau ensures that the
patched cover lies in a component ¢; of the form xTy7.

- There are finitely many x“/y'yl ~- there is some i # i’ such that ¢; = ¢;.
It is defined over Q N K;((X)) N Ky ((X)) = K. O



Applications

Proposition 8.4.8
e ]

If (g1,....8n) = G, there is a component def. /Q of connected G-covers with:

[{i | ord(g) = 2} + ) _ ¢(ord(g))

i=1

branch points.

- Mathieu group M3: generated by two order 3 elements ~+ 4 branch points.
Cau'’s criterion gave 15 branch points.

- PSL,(16) x Z/2Z: generated by two order 6 elements ~~ 4 branch points.



