SURJECTING ONTO (PRO-)NILPOTENT GROUPS

In what follows, G is a group, and $\pi: G \to G^{ab}$ is always the canonical surjection (of kernel [G, G]). Let us start with the following (obvious) observation:

Proposition 1. Assume that G is solvable, and let H be a normal subgroup of G with $\pi(H) = G^{ab}$. Then, H = G.

Proof. The condition $\pi(H) = G^{ab}$ means that G = H[G, G]. We have $(G/H)^{ab} = G/(H[G, G]) = 0$, so $(G/H)' = [G/H, G/H] = \ker(G/H \rightarrow (G/H)^{ab}) = G/H$, and then $(G/H)^{(n)} = G/H$ for all $n \ge 0$. But G/H is solvable, so $(G/H)^{(n)} = 0$ for large enough n, and therefore G/H = 0. \square

We shall generalize it to non-normal subgroups for nilpotent G (cf. [MKS04, Lemma 5.9]).

Proposition 2. Assume that G is nilpotent. Let $f: H \to G$ be a group homomorphism such that $\pi \circ f$ is surjective (onto G^{ab}). Then, f is surjective.

Proof. We prove this by induction on the size of G. The case G=1 is clear, so we assume that $G \neq 1$ and that the result holds for groups of size <|G|. Since G is non-trivial and nilpotent, its center is non-trivial, so |G/Z(G)| < |G|. The composite map $f' \colon H \xrightarrow{f} G \to (G/Z(G)) \twoheadrightarrow (G/Z(G))^{ab}$ is surjective, as it factors as $H \xrightarrow{\pi \circ f} G^{ab} \twoheadrightarrow (G/Z(G))^{ab}$, so by the induction hypothesis f' is surjective (onto G/Z(G)), meaning that G = f(H)Z(G). This implies that the map $[H,H] \to [G,G]$ induced by f is surjective: indeed, [G,G] = [f(H)Z(G),f(H)Z(G)] = [f(H),f(H)] = f([H,H]). Finally, the fact that $\pi \circ f$ is surjective means that G = f(H)[G,G], so G = f(H)f([H,H]) = f(H[H,H]) = f(H).

Proposition 3. Assume that G is pro-nilpotent. Let $f: H \to G$ be a continuous group homomorphism from a compact (e.g. profinite) topological group H, such that $\pi \circ f$ is surjective (onto G^{ab}). Then, f is surjective.

Proof. Write $G = \varprojlim_n G_n$ where (G_n) is a projective system of nilpotent groups. Since f is continuous and H is compact, f(H) is compact in the Hausdorff space G, so closed. Thus, it suffices to show that f has dense image, i.e., that the composite maps $H \xrightarrow{f} G \twoheadrightarrow G_n$ are all surjective. But this follows from Proposition 2.

In particular (taking f to be the inclusion $H \hookrightarrow G$), any closed subgroup H of a pro-nilpotent group G that satisfies $\pi(H) = G^{ab}$ equals G.

References

[MKS04] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. *Combinatorial group theory*. Dover Publications, Inc., Mineola, NY, 2nd edition, 2004.