Ensembles de Melotti

B.S.

18 mai 2018

1 Généralités

Définition 1. Une partie A de \mathbb{N} est un ensemble de MELOTTI si pour tout n > 1 et pour tout $a_1, \ldots, a_n \in A$, on a:

$$\sum_{i=1}^{n} a_i \not\in A$$

Remarque 2. Si A est un ensemble de MELOTTI, $0 \notin A$. En effet, si 0 était dans A, on devrait avoir $0+0 \notin A$, ce qui est absurde.

Remarque 3. Un sous-ensemble d'un ensemble de Melotti est de Melotti

Théorème 4. Un ensemble de MELOTTI est nécessairement fini. S'il est non vide, son cardinal est inférieur à son minimum.

Preuve. Soit un ensemble de MELOTTI A non vide et $n = \min(A) > 0$. On définit donc : $\pi_n : A \to \mathbb{Z}/n\mathbb{Z}$. Montrons que π_n est injective. On saura alors que $|A| \le |\mathbb{Z}/n\mathbb{Z}| = n = \min(A)$ d'où le résultat. Supposons $\pi_n(x) = \pi_n(y)$ avec $x, y \in A$. Sans perte de généralité, on peut supposer x < y. On écrit alors :

$$y = x + kn$$

avec $k \ge 0$. Si k > 0, cela signifie que x + n + n + n + n + n + n + n (k répétitions) est dans A, ce qui contredit l'hypothèse. On a donc k = 0, c'est-à-dire y = x. L'application π_n est donc injective.

Remarque 5. Le raisonnement précédent tient bien sûr pour n'importe quel élément de A, et pas seulement pour le minimum. Ainsi, pour tout $a \in A$, $\pi_a : A \to \mathbb{Z}/a\mathbb{Z}$ est une fonction injective, ce qui est possiblement très contraignant.

2 Classification

On cherche à caractériser les ensembles de MELOTTI parmi les parties finies de N, on va les classer selon leur minimum.

On dénote par la suite par \mathfrak{M} l'ensemble des ensembles de Melotti et par \mathfrak{M}_n l'ensemble des ensembles de Melotti de minimum n. On notera $\mathfrak{M}_0 = \emptyset$, de sorte que $\mathfrak{M} = \bigcup_{n \geq 0} \mathfrak{M}_n$ et que $A \in \mathfrak{M}_n \Rightarrow |A| \leq n$.

Une question qu'on se pose est la suivante :

Question 6. Étant donné un entier $n \in \mathbb{N}$ et une partie \tilde{B} de $(\mathbb{Z}/n\mathbb{Z}) \setminus \{0\}$, quelles sont les parties B de \mathbb{N} telles que :

- L'application $B \to \mathbb{Z}/n\mathbb{Z}$ est injective et a pour image \tilde{B} (i.e. B est un relèvement de la partie \tilde{B}).
- $-\{n\} \cup B \in \mathfrak{M}_n$

On se demande aussi:

Question 7. Étant donné un entier $n \in \mathbb{N}$ et un ensemble $A \in \mathfrak{M}_n$, existe-t-il toujours $A' \in \mathfrak{M}_n$ tel que $A \subset A'$ et |A'| = n?

2.1 Description de \mathfrak{M}_n pour $n \leq 3$

Si $A \in \mathfrak{M}_1$, alors $1 \in A$ et $|A| \leq 1$, d'où $A = \{1\}$.

Si $A \in \mathfrak{M}_2$, alors soit $A = \{2\}$, soit A est de la forme $\{2, 2k + 1\}$ avec $k \geq 1$. Ces ensembles conviennent clairement.

Si $A \in \mathfrak{M}_3$, alors :

- Soit $A = \{3\}$
- Soit A est de la forme $\{3, 3k+1\}$ avec $k \geq 1$. On vérifie alors que A convient.
- Soit A est de la forme $\{3, 3l+2\}$ avec $l \geq 1$. On vérifie alors que A convient.
- Soit A est de la forme $\{3, 3k+1, 3l+2\}$ avec $k, l \ge 1$. On a alors des conditions nécessaires sur k et l. En effet, si $k \ge 2l+1$, alors $3k+1=(k-2l-1)3+2(3l+2) \not\in A$. De même si $l \ge 2k$ alors $3l+2=3(l-2k)+2(3k+1) \not\in A$. Ces situations sont bien sûr absurdes.

Donc k < 2l + 1 et l < 2k. Montrons que, sous ces deux hypothèses supplémentaires, A convient. On va pour cela considérer les trois types possibles de contre-exemple.

- 1. Pour qu'une somme d'éléments de A soit égale à 3, il faut que ses termes soient inférieurs ou égaux à 3. Seule la somme triviale 3=3 convient donc.
- 2. Si une somme d'éléments de A est égale à 3k+1, et qu'elle est non triviale, elle n'implique que 3 et 3l+2. Elle est donc de la forme 3u+(3l+2)v=3k+1, où on peut supposer $v\in\{0,1,2\}$ (quitte à augmenter u). La congruence modulo 3 impose $2v=1\mod 3$ soit v=2. on a alors :

$$3k + 1 = 3u + 2(3l + 2) = 3(u + 2l + 1) + 1$$

On a alors $k = u + 2l + 1 \ge 2l + 1$, ce qui contredit notre hypothèse.

3. Si une somme d'éléments de A est égale à 3l+2, et qu'elle est non triviale, elle n'implique que 3 et 3k+1. Elle est donc de la forme 3u+(3k+1)v=3l+2, où on peut supposer $v\in\{0,1,2\}$ (quitte à augmenter u). La congruence modulo 3 impose v=2. on a alors :

$$3l + 2 = 3u + 2(3k + 1) = 3(u + 2k) + 2$$

On a alors $l=u+2k\geq 2k$, ce qui contredit notre hypothèse.

Le cas de \mathfrak{M}_3 est particulièrement intéressant, parce qu'il laisse entrevoir la complexité de la situation.

2.2 Tentative de caractérisation de \mathfrak{M}_n pour n quelconque

Soit $n \in \mathbb{N}^*$ et une partie I de [[1, n-1]].

Un ensemble de Melotti associé à I est nécessairement de la forme :

$$\{n\} \cup \{nk_i + i \mid i \in I\}$$

avec $\forall i \in I, k_i \geq 1$. On pose en outre $k_0 = 1$ et on définit $J = I \cup \{0\}$.

Soit un ensemble A de cette forme. On suppose qu'il n'est pas de MELOTTI. Cela signifie qu'il existe $j \in J$ obtenu comme une somme non triviale d'éléments de A. Il est clair que ça n'est pas possible pour j=0, et donc $j \in I$. On peut écrire :

$$nk_j + j = \sum_{i \in J \setminus \{j\}} a_i(nk_i + i)$$
$$= n \left(\sum_{i \in J \setminus \{j\}} a_i k_i\right) + \sum_{i \in I \setminus \{j\}} a_i i$$

où, quitte à augmenter a_0 , on peut supposer tous les $(a_i)_{i\in I}$ dans [[0, m-1]]. On remarque que nécessairement, on a :

$$\sum_{i \in I \setminus \{j\}} a_i i = j \mod n$$

Désignons par α le quotient obtenu dans la division euclidienne de $\sum_{i \in I \setminus \{j\}} a_i i$ par n. On a alors :

$$k_j = \sum_{i \in J \setminus \{j\}} a_i k_i + \alpha$$

En s'inspirant du cas n=3, on est alors tenté de faire l'hypothèse suivante : Pour tout $j \in I$, pour toute famille $(a_i)_{i \in I \setminus \{j\}} \in [[0, n-1]]^{I \setminus \{j\}}$ vérifiant $\sum_{i \neq j} a_i i = j \mod n$, on a :

$$k_j < \sum_{i \in I \setminus \{j\}} a_i k_i + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} a_i i - j \right)$$

Dans ce cas, on a bien une contradiction puisque:

$$k_j = \sum_{i \in J \setminus \{j\}} a_i k_i + \alpha \ge \sum_{i \in I \setminus \{j\}} a_i k_i + \alpha$$

La condition précédente est donc suffisante. Cependant, elle n'est pas très explicite, et il reste à montrer qu'elle est nécessaire.

Montrons d'abord que pour n = 3, $I = \{1, 2\}$, on retrouve bien la condition obtenue dans la sous-section précédente :

— Pour j = 1, il faut montrer que si $a_2 2 = 1 \mod 3$ (c'est-à-dire $a_2 = 2$) alors :

$$k_1 < a_2 k_2 + \frac{1}{3}(a_2 2 - 1) = 2k_2 + \frac{4 - 1}{3} = 2k_2 + 1$$

— Pour j=2, il faut montrer que si $a_11=2 \mod 3$ (c'est-à-dire $a_1=2$) alors :

$$k_2 < a_1 k_1 + \frac{1}{3}(a_1 1 - 2) = 2k_1 + \frac{2 - 2}{3} = 2k_1$$

On retrouve donc bien les conditions précédentes.

 $Montrons \ \grave{a} \ pr\acute{e}sent \ que \ la \ condition \ est \ n\acute{e}cessaire. \ On \ a \ un \ ensemble, \ suppos\acute{e} \ de \ MELOTTI, \ de \ la \ forme:$

$$\{n\} \cup \{nk_i + i \mid i \in I\}$$

Soit $j \in I$ et une famille $(a_i)_{i \in I \setminus \{j\}} \in [[0, n-1]]^{I \setminus \{j\}}$ vérifiant $\sum_{i \neq j} a_i i = j$. On pose :

$$\alpha = \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} a_i i - j \right)$$

On a:

$$\sum_{i \neq j} a_i (nk_i + i) = n \left(\sum_{i \neq j} a_i k_i \right) + \sum_{i \neq j} a_i i = \left(\sum_{i \neq j} a_i k_i + \alpha \right) n + j$$

Supposons $k_j \geq (\sum_{i \neq j} a_i k_i) + \alpha$. Alors:

$$nk_j + j = \left(k_j - \alpha - \sum_{i \neq j} a_i k_i\right) n + \left(\sum_{i \neq j} a_i k_i + \alpha\right) n + j$$
$$= \left(k_j - \alpha - \sum_{i \neq j} a_i k_i\right) n + \sum_{i \neq j} a_i (nk_i + i)$$

On a donc une somme non triviale d'éléments de A qui est dans A, ce qui contredit le fait que A soit de MELOTTI. Ainsi $k_j < (\sum_{i \neq j} a_i k_i) + \alpha$, d'où la conclusion. La condition précédente est donc bien une condition nécessaire et suffisante.

Par exemple, pour $(k_i) = 1$, on devrait être capable de prouver, lorsque $\sum_{i \neq j} a_i i = j \mod n$,

$$\forall j \in [[1, n-1]], 1 < \sum_{i \neq j} a_i + \frac{1}{n} \left(\sum_{i \neq j} a_i i - j \right)$$

Cela est clair si (a_i) contient au moins un terme supérieur à 2 ou si au moins deux termes sont non nuls. Supposons que ce ne soit pas le cas. Alors a_i ne prend ses valeurs que parmi 0 et 1 et il y a exactement un terme non nul. Notons son indice i, on a $a_i = 1$. La congruence donne $i = j \mod n$ et donc i = j, ce qui est absurde. Donc la suite constante égale à 1 vérifie les conditions. Et, en effet, on a bien que $\{n, n+1, n+2, \ldots, 2n-1\}$ est un ensemble de MELOTTI.

L'équivalence précédente ramène l'étude des ensembles de MELOTTI à une question purement arithmétique :

Question 8. Soit $n \in \mathbb{N}^*$ et une partie I de [[1, n-1]]. Pour quelles valeurs de $(k_i)_{i \in I}$, $k_i \ge 1$ a-t-on la propriété suivante :

Pour tout $j \in I$ et pour toute famille $(a_i)_{i \in I \setminus \{j\}} \in [[0, n-1]]^{I \setminus \{j\}}$ vérifiant $\sum_{i \neq j} a_i i = j \mod n$, on $a : I \cap I$

$$k_j < \sum_{i \in I \setminus \{j\}} a_i k_i + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} a_i i - j \right)$$

2.3 Complétion?

On se pose la question suivante:

Question 9. Un ensemble de MELOTTI $A \in \mathfrak{M}_n$ peut-il toujours être étendu en un $A' \in \mathfrak{M}_n$ de cardinal n?

Si la réponse est affirmative, on devrait être capable de le montrer en complétant élément par élément. Soit donc une partie $I \subseteq [[1, n-1]]$ et un ensemble de MELOTTI de la forme suivante :

$$A = \{n\} \cup \{k_i n + i \mid i \in I\}$$

Soit $s \in [[1, n-1]] \setminus I$. Existe-t-il k tel que :

$$A' = A \cup \{kn + s\} \in \mathfrak{M}_n$$

On pose $J = I \cup \{s\}$ et $k_s = k$. On note \mathcal{S} l'ensemble des suites $(a_i) \in [[0, n-1]]^I$ telles que $\sum_{i \in I} a_i i = s \mod n$ et pour tout $j \in I$, on pose \mathcal{S}'_j l'ensemble des suites $(a_i) \in [[0, n-1]]^{J \setminus \{j\}}$ telles que $\sum_{i \in J \setminus \{j\}} a_i i = j \mod n$.

On obtient ces conditions:

$$\forall (a_i)_{i \in I} \in \mathcal{S}, k < \sum_{i \in I} a_i k_i + \frac{1}{n} \left(\sum_{i \in I} a_i i - s \right)$$

$$\forall j \in I, \forall (a_i)_{i \in J \setminus \{j\}} \in \mathcal{S}'_j, k_j < \sum_{i \in I \setminus \{j\}} a_i k_i + a_s k + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} a_i i + a_s s - j \right)$$

On définit donc :

$$k = \min_{(a_i) \in \mathcal{S}} \sum_{i \in I} a_i k_i + \frac{1}{n} \left(\sum_{i \in I} a_i i - s \right) - 1$$

Et on fixe une suite $(b_i)_{i\in I}\in\mathcal{S}$ donnant le minimum. Vu la définition, il est clair que pour toute suite $(a_i)\in\mathcal{S}$ on a :

$$k < \sum_{i \in I} a_i k_i + \frac{1}{n} \left(\sum_{i \in I} a_i i - s \right)$$

Fixons $j \in I$ et une suite $(a_i) \in \mathcal{S}'_j$ (on notera $a = a_s$). Il nous reste à vérifier que :

$$k_j < \sum_{i \in I \setminus \{j\}} a_i k_i + ak + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} a_i i + as - j \right)$$

On désignera par (RH) le membre de droite de cette inégalité.

Si a=0, l'inégalité résulte immédiatement du fait que $A\in\mathfrak{M}_n$. On se place donc dans le cas $a\geq 1$.

Montrons que soit $a \geq 2$, soit il existe un $i \in I$ tel que $a_i \geq 1$. Supposons que a = 1 et que pour tout $i \in I$ on ait $a_i = 0$, alors puisque $(a_i)_{i \in J \setminus \{j\}} \in \mathcal{S}'_i$:

$$s = \sum_{i \in I \setminus \{j\}} a_i i + as = j \mod n$$

Ce qui contredit le choix de s. La même chose s'applique à (b_i) : soit $b_j \geq 2$, soit il existe $i \neq j$ tel que $b_i \geq 1$. On sait donc toujours que soit $(RH) \geq 2k \geq 2$, soit $(RH) \geq 1+k \geq 1+1=2$. On n'a donc à vérifier le résultat que lorsque $k_j \geq 2$. On suppose donc $k_j \geq 2$.

Remarquons que
$$ak \ge a \left(\sum_{i \in I} b_i k_i - 1 \right)$$
.
— Si $b_j \ge 2$, on a $(RH) \ge ak \ge b_j k_j - 1 \ge 2k_j - 1 > k_j$.

— Si $b_j=1,\; a\geq 2,$ alors il existe un $i\neq j$ tel que b_i soit non nul, et alors :

$$(RH) \ge ak \ge 2(k_i + b_i k_i - 1) \ge 2(k_i + 1 - 1) > k_i$$

— Si $b_j=1,\ a=1,$ alors il y a un $i\neq j$ tel que $b_i\geq 1,$ ainsi qu'un $l\in I$ tel que $a_l\geq 1.$ On a alors

$$(RH) \ge a_l k_l + k \ge 1 + (k_j + k_i b_i - 1) \ge 1 + k_j + 1 - 1 > k_j$$

— Si $b_j = 0$, calculons:

$$\sum_{i \in I \setminus \{j\}} (a_i + ab_i)i = \left(\sum_{i \in I \setminus \{j\}} a_i i\right) + a \left(\sum_{i \in I \setminus \{j\}} b_i i\right)$$
$$= (j - as) + a(s - b_j j) \mod n$$
$$= j \mod n$$

Donc la suite $(d_i)_{i \in I \setminus \{j\}}$, où $d_i = a_i + ab_i \mod n$, vérifie toutes les hypothèses pour qu'on puisse utiliser le fait que A est de MELOTTI:

$$k_j < \sum_{i \in I \setminus \{j\}} d_i k_i + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} d_i i - j \right)$$

Notons α le membre de droite de cette inégalité. On note également $q_i = \frac{1}{n}(a_i + ab_i - d_i)$. On a :

$$\begin{split} (RH) &= \sum_{i \in I \setminus \{j\}} a_i k_i + ak + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} a_i i + as - j \right) \\ &= \sum_{i \in I \setminus \{j\}} a_i k_i + a \left(\sum_{i \in I \setminus \{j\}} b_i k_i + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} b_i i - s \right) - 1 \right) + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} a_i i + as - j \right) \\ &= \sum_{i \in I \setminus \{j\}} (a_i + ab_i) k_i + ab_j k_j - a + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} (a_i + ab_i) i + ab_j j - as + as - j \right) \\ &= \sum_{i \in I \setminus \{j\}} (a_i + ab_i) k_i - a + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} (a_i + ab_i) i - j \right) \\ &= \sum_{i \in I \setminus \{j\}} d_i k_i - a + \frac{1}{n} \left(\sum_{i \in I \setminus \{j\}} d_i i - j \right) + \left(\sum_{i \in I \setminus \{j\}} q_i (i + nk_i) \right) \\ &= \alpha - a + \sum_{i \in I \setminus \{j\}} q_i (i + nk_i) \end{split}$$

Il suffit donc de montrer

$$\sum_{i \in I \setminus \{j\}} q_i(i + nk_i) \ge a$$

Puisque $nk_i \ge n > a$, il suffit effectivement de montrer qu'il existe un q_i non nul. Supposons donc que pour tout $i \ne j$, on ait $a_i + ab_i < n$.