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Definition. Let n ≥ 1. A connected topological space X is said to be n-flimsy if removing fewer
then n arbitrary points leaves the space connected and removing any n arbitrary (distinct) points
disconnects the space. X has to have more than n points.

For example, R is 1-flimsy and S1 is 2-flimsy. In the following, we prove 3-flimsy spaces do not
exist.

Theorem 1. Let X a 2-flimsy space and x, y ∈ X , with x 6= y. X\{x, y} has exactly two
connected components.

Proof. It is equivalent to show that X\{x, y} can not be covered by three disjoint non-empty open
sets. Let be three open sets ofX , U1, U2, and U3, such that (U1∪U2∪U3)∩{x, y}c = X\{x, y} and
U1∩U2∩{x, y}c = U1∩U3∩{x, y}c = U2∩U3∩{x, y}c = ∅. We are going to show by contradiction
that there is i ∈ {1, 2, 3} such that Ui∩{x, y}c = ∅: let us suppose ∀i ∈ {1, 2, 3}, Ui∩{x, y}c 6= ∅.
We choose u1 ∈ U1 ∩ {x, y}c and u2 ∈ U2 ∩ {x, y}c, so u1 /∈ U2 ∪ U3 and u2 /∈ U1 ∪ U3. We are
going to prove X\{u1, u2} is connected, which contradicts that X is 2-flimsy.

LetU, V two open sets ofX such that (U∪V )∩{u1, u2}c = X\{u1, u2} andU∩V ∩{u1, u2}c = ∅.
We can suppose x ∈ U without loss of generality, and so x /∈ V .

1. U ∪ U1 ∪ U2 and V ∩ U3 are open.

(U ∪ U1 ∪ U2) ∩ (V ∩ U3) ⊂ (U ∩ V ) ∪ (U1 ∩ U3) ∪ (U2 ∩ U3) ⊂ {u1, u2, x, y} but x /∈ V ,
and u1, u2 /∈ U3 so (U ∪ U1 ∪ U2) ∩ (V ∩ U3) ∩ {y}c = ∅
(U ∪ U1 ∪ U2) ∪ (V ∩ U3) ⊃ U1 ∪ U2 ∪ (U3 ∩ (U ∪ V )) ⊃ (U1 ∪ U2 ∪ U3) ∩ {u1, u2}c ⊃
X\{u1, u2, x, y} but x ∈ U , u1 ∈ U1, and u2 ∈ U2 so ((U ∪U1 ∪U2)∪ (V ∩U3))∩ {y}c =
X\{y}
X is 2-flimsy so X\{y} is connected. Moreover x ∈ (U ∪ U1 ∪ U2) ∩ {y}c 6= ∅.
So (V ∩ U3) ∩ {y}c = ∅
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2. If y ∈ V , then y /∈ U and the previous step implies (U∩U3)∩{x}c = ∅. Then U3∩{x, y}c ⊂
(U3 ∩ U ∩ {x}c) ∪ (U3 ∩ V ∩ {y}c) ∪ (U3 ∩ {u1, u2}) = ∅ which is false.

So y ∈ U , y /∈ V , V ∩ U3 = ∅, and U3 ⊂ U

3. U ∪ U1 and V ∩ U2 are open.

(U ∪ U1) ∩ (V ∩ U2) ⊂ (U ∩ V ) ∪ (U1 ∩ U2) ⊂ {x, y, u1, u2} but u1 /∈ U2 and x, y /∈ V so
(U ∪ U1) ∩ (V ∩ U2) ∩ {u2}c = ∅
(U∪U1)∪(V ∩U2) ⊃ U1∪U∪(U2∩(U∪V )) ⊃ (U1∪U3∪U2)∩{u1, u2}c ⊃ X\{u1, u2, x, y}
but x, y ∈ U , and u1 ∈ U1 so ((U ∪ U1) ∪ (V ∩ U2)) ∩ {u2}c = X\{u2}
X\{u2} is connected and x ∈ (U ∪ U1) ∩ {u2}c 6= ∅ so (V ∩ U2) ∩ {u2}c = ∅

4. With the same previous step, we have (V ∩ U1) ∩ {u1}c = ∅.
So V ∩ {u1, u2}c ⊂ (V ∩ U1 ∩ {u1}c) ∪ (V ∩ U2 ∩ {u2}c) ∪ (V ∩ (U3 ∪ {x, y})) = ∅. So,
X\{u1, u2} is connected.

Theorem 2. A n-flimsy space is infinite.

Proof. see https://math.stackexchange.com/questions/2939445/flimsy-spaces-removing-any-n-points-
results-in-disconnectedness for the proof of ’Babelfish’

Theorem 3. Let X a n-flimsy space. ∀x ∈ X , {x} is either open or closed.

Proof. We start with the case n = 1. X is connected but X\{x} is disconnected. It exists a
nontrivial clopen set Y ⊂ X\{x}, in particular Y 6= ∅ and Y ∪ {x} 6= X . Since Y is open in
X\{x}, Y or Y ∪ {x} is open in X .

• if Y is open in X , by connectedness, Y is not closed in X . Since Y in closed in X\{x},
Y ∪ {x} is closed in X . So, {x} = (Y ∪ {x}) ∩ (X\Y ) is closed.

• if Y ∪ {x} is open in X , then Y is closed in X , and {x} = (Y ∪ {x}) ∩ (X\Y ) is open.

By induction, we suppose the theorem to be true for n ≥ 1, and we observe X a (n + 1)-flimsy
space and x ∈ X . X is infinite, so there is y, z ∈ X , y 6= z, such that {x} is either open in X\{y}
andX\{z} or closed inX\{y} andX\{z}, becauseX\{y} andX\{z} are n-flimsy. We suppose
we are in the open case (the closed case can be examined in the same way).

If {x} is not open in X then {x, y} and {x, z} are open in X , so {x} = {x, y} ∩ {x, z} is open in
X .

Lemma 1. Let x, y ∈ X , two distinct points of a 2-flimsy space, and C one of the two connected
components of X\{x, y}. C ∪ {x} and C ∪ {y} are connected.
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Proof. By contradiction, we suppose C ∪ {x} is disconnected.

C and {x} are connected, so they are the only connected components of C ∪{x}, so C is open and
closed in C ∪ {x} ⊂ X\{y}. There is an open set U of X\{y} such that C = U ∩ (C ∪ {x})
Moreover, C is open and closed in X\{x, y}, because it is one of its only two connected compo-
nents, so C or C ∪ {x} is open in X\{y}. But we know C = U ∩ (C ∪ {x}), so in every case,
C is open in X\{y}. The same shows C is closed in X\{y}. C is not trivial so X\{y} is not
connected: we have a contradiction.

Let X a 2-flimsy space and x, y, z three distinct points of X . We denote C({x, y}, z ∈) the
connected component of X\{x, y} which contains z, and C({x, y}, z /∈) the other one. We also
denote C({x, x}, z ∈) = X\{x} and C({x, x}, z /∈) = ∅.
Some relations and basic properties:

C({x, y}, z ∈) ∪ C({x, y}, z /∈) = X\{x, y} and C({x, y}, z ∈) ∩ C({x, y}, z /∈) = ∅.
If a 6= x, y, then a ∈ C({x, y}, z ∈) ⇔ C({x, y}, z ∈) = C({x, y}, a ∈) and a ∈ C({x, y}, z /∈
)⇔ C({x, y}, z /∈) = C({x, y}, a ∈)

Theorem 4. If A is a connected subset of X , a 2-flimsy space, then Ac is also connected.

Proof. If A is trivial, the result is obvious. We can choose some a ∈ A and ψ ∈ Ac. We begin to
prove the following equality.

A =
⋂
x/∈A

C({x, ψ}, a ∈)

Let x /∈ A. A ⊂ X\{x, ψ}, and a ∈ A ∩ C({x, ψ}, a ∈) 6= ∅, so A ⊂ C({x, ψ}, a ∈) by
connectedness. Moreover, x /∈ C({x, ψ}, a ∈), then x /∈

⋂
y/∈A

C({y, ψ}, a ∈). We obtain a new

equality, with the complements.

Ac =
⋃
x∈Ac

C({x, ψ}, a /∈) ∪ {x, ψ}

Thanks to the previous lemma, we know the C({x, ψ}, a /∈) ∪ {x, ψ} are connected, and they all
contain ψ, so their union is also connected.

Lemma 2. Let x, t, s ∈ X , three distinct points of a 2-flimsy space.

C({t, s}, x /∈) = C({x, t}, s ∈) ∩ C({x, s}, t ∈)

C({t, s}, x ∈) = C({x, t}, s /∈) ∪ C({x, s}, t /∈) ∪ {x}

Proof. First we can remark that

X\{t, s} = [C({x, t}, s ∈) ∩ C({x, s}, t ∈)] ∪ [C({x, t}, s /∈) ∪ C({x, s}, t /∈) ∪ {x}]

∅ = [C({x, t}, s ∈) ∩ C({x, s}, t ∈)] ∩ [C({x, t}, s /∈) ∪ C({x, s}, t /∈) ∪ {x}]
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so we only need to show these two sets are connected.

By the lemma 1, C({x, t}, s /∈) ∪ {x} and C({x, s}, t /∈) ∪ {x} are connected, so

C({x, t}, s /∈) ∪ C({x, s}, t /∈) ∪ {x} is connected as their union.

[C({x, t}, s ∈) ∩ C({x, s}, t ∈)]c = C({x, t}, s /∈) ∪ C({x, s}, t /∈) ∪ {x, t, s} is connected,
because C({x, t}, s /∈) ∪ {x, t} and C({x, s}, t /∈) ∪ {x, s} are connected. The complement of a
connected set is connected, which concludes the proof.

Theorem 5. There are no 3-flimsy spaces.

Proof. Let X a 3-flimsy space and x, y, t, s some distinct points of X . X\{y} is 2-flimsy, so if
C1 is the connected component of X\{y, x, t} containing s and C2 is the connected component of
X\{y, x, s} containing t, thenD = C1∩C2 is one of the two connected components ofX\{y, t, s}.
Moreover, D is also one of the two connected components of X\{x, t, s}, by using the lemma 2
in X\{x}. x, y, t, s /∈ D
So, D is open and closed in X\{x, t, s} and in X\{y, t, s}. We have two open sets of X , Ux and
Uy, and two closed sets of X , Gx and Gy, such that

Ux ∩ {x, t, s}c = Gx ∩ {x, t, s}c = D and Uy ∩ {y, t, s}c = Gy ∩ {y, t, s}c = D, so y /∈ Ux, Gx

and x /∈ Uy, Gy

Ux∩Uy∩{t, s}c = Ux∩{y, t, s}c∩Uy∩{x, t, s}c = D∩D = D and also, Gx∩Gy∩{t, s}c = D.
Since Ux ∩ Uy is open in X and Gx ∩ Gy is closed in X , D is open and closed in X\{t, s}.
Moreover, D is not trivial because it is a connected component of X\{x, t, s}. So X\{t, s} is not
connected and X is not 3-flimsy.

Lemma 3. If s, t, u, v ∈ X are distinct such that v ∈ C({s, t}, u /∈), then s ∈ C({u, v}, t /∈).

Proof.
C({u, v}, t /∈) = C({u, t}, v ∈) ∩ C({v, t}, u ∈)

v ∈ C({s, t}, u /∈) = C({u, s}, t ∈) ∩ C({u, t}, s ∈) ⊂ C({u, t}, s ∈)

So C({u, t}, v ∈) = C({u, t}, s ∈) and s ∈ C({u, t}, v ∈).

Moreover, v ∈ C({s, t}, u /∈) is the same thing as u ∈ C({s, t}, v /∈).

u ∈ C({s, t}, v /∈) = C({v, s}, t ∈) ∩ C({v, t}, s ∈) ⊂ C({v, t}, s ∈)

So C({v, t}, u ∈) = C({v, t}, s ∈) and s ∈ C({v, t}, u ∈).

Finally, s ∈ C({u, t}, v ∈) ∩ C({v, t}, u ∈) = C({u, v}, t /∈).

Theorem 6. If X is a 2-flimsy space, then X is a Hausdorff space.

Proof. Let x 6= y two points of X . We choose some a ∈ X distinct of x and y, and we take some
b ∈ C({x, y}, a /∈). Then, we choose b̃ ∈ C({x, a}, b /∈) and ã ∈ C({y, b}, a /∈). Obviously,
x, y, a, b, ã, b̃ are distinct. We are going to show that C({b, b̃}, x ∈) ∩ C({a, ã}, y ∈) = ∅.
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Because b̃ ∈ C({x, a}, b /∈), by using the lemma, we have a ∈ C({b, b̃}, x /∈) and so

x ∈ C({b, b̃}, x ∈) = C({b, b̃}, a /∈) ⊂ C({a, b}, b̃ ∈).

This implies C({a, b}, b̃ ∈) = C({a, b}, x ∈) and C({b, b̃}, x ∈) ⊂ C({a, b}, x ∈).

With the same method, we have C({a, ã}, y ∈) ⊂ C({a, b}, y ∈). But since b ∈ C({x, y}, a /∈),
by using the lemma, we have y ∈ C({a, b}, x /∈), so C({a, b}, y ∈) = C({a, b}, x /∈) and we
conclude

C({b, b̃}, x ∈) ∩ C({a, ã}, y ∈) ⊂ C({a, b}, x ∈) ∩ C({a, b}, x /∈) = ∅

C({b, b̃}, x ∈) is open in X\{b, b̃}, so there is an open set U of X such that U ∩ {b, b̃}c =
C({b, b̃}, x ∈). We have also V an open set such that V ∩ {a, ã}c = C({a, ã}, y ∈). In particular,
x ∈ U and y ∈ V .

U ∩ V ⊂ (C({b, b̃}, x ∈) ∪ {b, b̃}) ∩ (C({a, ã}, y ∈) ∪ {a, ã})

We need to show a, ã /∈ C({b, b̃}, x ∈), (b, b̃ /∈ C({a, ã}, y ∈) will follow by symmetry), to
conclude U ∩ V = ∅. However, we have already shown a ∈ C({b, b̃}, x /∈). Also recall that
C({b, b̃}, x ∈) ⊂ C({a, b}, x ∈).

ã ∈ C({y, b}, a /∈) ⊂ C({a, b}, y ∈) = C({a, b}, x /∈)

So, ã /∈ C({a, b}, x ∈) and ã /∈ C({b, b̃}, x ∈).

Theorem 7. Let X a 2-flimsy space, x, y ∈ X , and C a connected component of X\{x, y}. Then,
C is open in X and C ∪ {x, y} is closed in X . Moreover, if x 6= y, then C is the interior of
C ∪ {x, y}, and C ∪ {x, y} is the closure of C.

The connected components of X without any two points form a base of a coarser topology on X .
With this topology, X is still a 2-flimsy space and the connected components of X without any two
points remain the same.

Proof. If x = y, C = X\{x} is open because X is Hausdorff.

If x 6= y, C is closed inX\{x, y}, and since {x, y} is closed inX (Hausdorff), C∪{x, y} is closed
in X . By the connectedness of X , X\{x}, and X\{y}, C ∪ {x, y}, C ∪ {y}, and C ∪ {x} are
not open in X . However, C is open in X\{x, y}, so C is open in X . The connectedness implies
C ∪ {y} and C ∪ {x} are not closed in X , and the identities on the closure and the interior follow.

It is easy to verify that the intersection of two sets of the form C({x, y}, t ∈) is either empty, either
of the form C({x, y}, t ∈), either an union of two sets of the form C({x, y}, t ∈). In the topology
generated by the C({x, y}, t ∈), all the C({x, y}, t ∈) are open and all the C({x, y}, t ∈)∪ {x, y}
are closed. So for any x 6= y, X\{x, y} is not connected.
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1 Omega flimsy

1.1 Small results

In all this section, X is an omega-flimsy topological space.

If T is a countable infinite subset of X , then X\T is not connected. Thus, there are two open sets
U and V of X , such that U ∩ V ⊂ T , (U ∪ V )c ⊂ T , U ∩ T c 6= ∅, and V ∩ T c 6= ∅. But, it
implies that (U ∩ V )∪ (U ∪ V )c is countable while X\[(U ∩ V )∪ (U ∪ V )c] is disconnected. So,
(U ∩ V ) ∪ (U ∪ V )c is infinite. Finally, by observing (U ∩ V ) is open and (U ∪ V )c is closed, we
conclude

Lemma 4. If T is a countable infinite subset of X , then there is an infinite S ⊂ T which is open
or closed.

Lemma 5. Except for a finite number of points, for all x ∈ X , {x} is either open or closed.

Proof. Let us think by contradiction, and let us suppose T = {xn, n ∈ N} is infinite countable
subset of X such that ∀n ∈ N, {xn} is nor open nor closed. Either, each infinite subset of T
contains a closed infinite subset, either T has a subset T ′ which does not contain any closed infinite
subset. So, each infinite subset of T ′ contains an open infinite subset. Without loss of generality,
we can suppose each infinite subset of T contains a closed infinite subset (the case with open is
similar). We define Tn = {xpkn , k ≥ 1} where pn is the n-th prime number. There are disjoint
subsets of T .

For all n ≥ 1, there is Sn ⊂ Tn, a closed infinite subset. We can construct a strictly increasing
sequence (an)n≥1 of indexes, such that xan ∈ Sn for all n ≥ 1. But there is S ⊂ {xan , n ≥ 1},
which is closed and infinite. For an infinity of n, S∩Sn = {xn} is closed, which is a contradiction.

The same argument can be adapted to show the following result.

Lemma 6. Let T be a countable infinite subset of X such that ∀x ∈ T, {x} is closed. There is an
infinite closed set S ⊂ T with empty interior.

If T does not contain any infinite closed subset, then each infinite subset of T contains an open
infinite subset, and there is x ∈ T such that {x} is open, which contradicts the connectedness of
X . If S is an infinite closed subset of T , then S\S̊ = ∂S satisfies all the desired properties. In
particular, it is infinite because X is omega-flimsy.

PISTES POUR LES KAPPA, MAIS INUTILEs POUR LES OMEGA

If S ⊂ T and if A is a clopen set of X\S. B = A ∩ T c is a clopen set of X\T such that
B ⊂ A ⊂ B ∪ T . Now, we place ourselves in X . There is an open set U and a closed set F such
that U ∩Sc = F ∩Sc = A and U ∩T c = F ∩T c = B. But B = U ∩T c is also open. B ∩F c ⊂ T
and since B ∩F c is open, B ∩F c = ∅, or in other words B ⊂ F , because T has an empty interior.
In the same way, U ⊂ B. So, B ⊂ U ⊂ B̊ ⊂ B ⊂ F ⊂ B ∪ T and B\B̊ ⊂ S.
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Conversely, if B is a clopen set of X\T such that B\B̊ ⊂ S, then A = B ∩ Sc = B̊ ∩ Sc is a
clopen set of X\S such that B ⊂ A ⊂ B ∪ T .

Moreover, if B = ∅, then U ⊂ T , and since U is open, U = ∅ = A. In the same way, if B = X\T
then A = X\S. So, B is trivial if and only if A is trivial.

Proposition 1. If T is a countable infinite closed set with empty interior, then

• for any B clopen set of X\T , there is A a clopen set of X\S such that B ⊂ A ⊂ B ∪ T if
and only if B\B̊ ⊂ S.

• X\S is disconnected if and only if there is B a non-trivial clopen set of X\T such that
B\B̊ ⊂ S.

We denote S(B) = B\B̊.

Definition. Let T be a countable infinite set. A subset A of P(T ) is said to be mirific in T when:

• for all A ∈ A, A is infinite.

• for all infinite S ⊂ T , there is A ∈ A such that A ⊂ T

If T is a countable infinite closed set with empty interior, then {S(B), B non-trivial clopen set of
X\T} is mirific in T .

Lemma 7. A mirific set can not be countable.

Proof. A = {An, n ≥ 1} mirific in N. Choose in each An a xn distinct of the previous and such
that xn ≥ 2n to find a contradiction

1.2 The connected subsets

The property of being omega-flimsy implies much more disconnectedness than it appears at first.
We place ourselves in X , an omega-flimsy space.

Theorem 8. The connected subsets of an omega-flimsy space are either finite or cofinite.

Definition. A subset T of X is said to be alike either if T is closed and T̊ = ∅ or if ∀x ∈ T, {x}
is open.

By connectedness of X , if T is alike and open (resp. closed), than its only closed (resp. open)
subset is ∅. We have already proven that if T is infinite, it has an infinite alike subset.

Lemma 8. If T is a countable infinite alike subset of X, then X\T has an infinity of connected
components.
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Proof. We assume that T is closed (interchanging the words ’closed’ and ’open’ gives the case
where T is open).

We begin by observing that if A is a non-trivial clopen subset of X\T then

FA = {S ⊂ T, ∃B clopen of X\S such that B ∩ T c = A}

is a filter on T . The facts that T ∈ FA and (R ⊂ S and R ∈ FA =⇒ S ∈ FA) are obvious.
Moreover, ∅ /∈ FA because X is connected. Let S1, S2 ∈ FA and let us prove that S1 ∩ S2 ∈ FA.
We have U1, U2 some open sets inX and F1, F2 some closed sets inX such that U1∩Sc

1 = F1∩Sc
1,

U2 ∩ Sc
2 = F2 ∩ Sc

2, and F1 ∩ T c = F2 ∩ T c = A. The set (U1 ∪ U1) ∩ (F1 ∩ F2)
c is open and

included in T , so it is empty.

(F1 ∩ F2)\(U1 ∪ U2) = (F1\U1) ∩ (F2\U2) ⊂ S1 ∩ S2

So, (F1 ∩ F2)∩ (S1 ∩ S2)
c = (U1 ∪U2)∩ (S1 ∩ S2)

c and (F1 ∩ F2)∩ T c = A, and S1 ∩ S2 ∈ FA.

Now, by contradiction, we suppose that X\T has an finite number of connected components.
Then, it also has a finite number of non-trivial clopen subsets (more precisely, if it has n connected
components than it has 2n − 2 non-trivial clopen subsets). By considering a sequence of disjoint
infinite subsets of T , one of them is not in any of the filters associated to those clopen subsets of
X\T . Indeed, if it was not the case, one of the filters would contain two disjoint subsets and so
would contain ∅ which is impossible. We choose S such subset of T . If B is a clopen subset of
X\S, then B ∩ T c is a clopen subset of X\T but is not a non-trivial clopen subset of X\T , so
B ∩ T c = ∅ or T c. Without loss of generality (may by taking (X\S)\B), we can assume that
B ⊂ T . Since B is open in X\S, there is an open subset U such that U ∩ Sc = B, so U ⊂ T
and U = ∅, thus B = ∅. The set X\S is connected which is a contradiction with the fact that X is
omega-flimsy.

The following lemma is a general result which is not too difficult to prove.

Lemma 9. Let Y be a topological space with an infinity of connected components and let C be a
connected subset of Y . There exists a sequence (An)n≥0 of disjoint non-empty clopen subsets, all
disjoint from C.

Proof. pRoOf Is LeFt FoR tHe ReAdEr

Now, we can begin to look at the connected subsets of X .

Proposition 2. If C a connected subset and if T is a countable infinite alike subset disjoint from
C, then C ∪ T is not connected. Typically, if C is a connected subset then C\C is finite.

Proof. Let us suppose by contradiction that C ∪ T is connected. There exists a sequence (An)n≥0
of disjoint non-empty clopen sets of X\T , all disjoint from C (because C is connected and T is
alike).

First case: We suppose for all n ≥ 0, there exists an ∈ An such that {an} is not open in X . In this
case, we set S = {an, n ≥ 0}.
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Let P andQ two open sets ofX such that P∩Q ⊂ S andX\S ⊂ P∪Q. Then, P∩Q∩(C∪T ) = ∅
and (P ∪ Q) ∩ (C ∪ T ) = C ∪ T because S is disjoint from C ∪ T . Since C ∪ T is connected,
we can assume without loss of generality that C ∪ T ⊂ P and (C ∪ T ) ∩Q = ∅. We are going to
show that Q = ∅ which will contradict the disconnectedness of X\S.

For all n ≥ 0, we have Un an open set and Fn a closed set such that Un ∩ T c = Fn ∩ T c = An. Let
us compare Un ∩Q and Fn ∩ P c which are respectively open and closed.

(Un ∩Q)∆(Fn ∩ P c) ⊂ [(Un∆Fn) ∩ (Q ∪ P c)] ∪ [(Q∆P c) ∩ (Un ∪ Fn)]

⊂ [T ∩ (Q ∪ P c)] ∪ [S ∩ (An ∪ T )]

⊂ S ∩ An

⊂ {an}

Because X\{an} is connected and T ∩Un ∩Q = ∅, it implies that Un ∩Q ⊂ {an}. Moreover, we
know that {an} is not open, so Un ∩ Q = ∅. In particular, an /∈ Q (because an ∈ An ⊂ Un), so
Q ∩ S = ∅ and P ∩Q = ∅.

To conclude, we see that P ∪
⋃
n≥0

Un and Q constitute an open partition of X , and so Q is trivial.

Indeed, we have already

(
P ∪

⋃
n≥0

Un

)
∩Q = (P ∩Q) ∪

⋃
n≥0

Un ∩Q = ∅. Plus, S ⊂
⋃
n≥0

Un so(
P ∪

⋃
n≥0

Un

)
∪Q = X .

Second case: We assume ∀n ≥ 0,∀an ∈ An, {an} is open in X . We choose for each n ≥ 0
some an ∈ An and we set S = {an, n ≥ 0}. S is an open and alike subset of X . We remark
{an} is also closed in X\T because {an} = An\

⋃
a∈An
a6=an

{a}. The connected set {an} is included in

{an} ∪ T and is not disjoint from T , otherwise {an} would be a clopen set of X . We deduce that
C ∪ T ∪ {an} = C ∪ T ∪ {an} is connected, and so is C ∪ T ∪ S.

Now, ifB is a closed set ofX\S which contains only singletons that are open inX , thenB is open
in X as an union of open singletons. However, since S is open in X , B is also closed in X . By
connectedness of X , B = ∅. Finally, with C ∪ T and S, we are under the assumptions of the first
case.

Corollary 1. ∀x ∈ X, {x} is not open. Except for a finite number of points, for all x ∈ X , {x} is
closed.

Proof. If {x} is open, then {x} is infinite because X is omega-flimsy, but can not be infinite
because {x} is connected.

Proposition 3. If C is an infinite and co-infinite connected subset of X , then X\C has an infinity
of connected components.

Proof. By contradiction, we write X =
n⊔

i=1

Ci where n ∈ N, the Ci are connected, and C = C1. It
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is not difficult to see

C\C̊ ⊂
n⋃

i=1

Ci\Ci.

Hence, the set ∂C = C\C̊ is finite and C̊ is a clopen subset of X\∂C which is connected. So,
C̊ = ∅ or C̊ = X\∂C. In the first case, C ⊂ ∂C is finite. In the second case, C ⊃ X\∂C is
cofinite.

We are finally able to prove the theorem.

Proof. Let C be an infinite and co-infinite connected subset of X . According to the previous
proposition, there exists a sequence (An)n≥0 of disjoint non-empty clopen sets in X\C. For all
n ≥ 0, we choose an ∈ An, and we automatically know such that {an} is not open in X (we even
can ask closed in X). We set S = {an, n ≥ 0}. The following of the proof is similar to the first
case of the first proposition.

Let P and Q two open sets of X such that P ∩Q ⊂ S and X\S ⊂ P ∪Q. Then, P ∩Q ∩ C = ∅
and (P ∪Q)∩C = C because S is disjoint from C. Since C is connected, we can assume without
loss of generality that C ⊂ P and C ∩ Q = ∅. We are going to show that Q ⊂ S which will
contradict the disconnectedness of X\S.

For all n ≥ 0, we have Un an open set and Fn a closed set such that Un ∩Cc = Fn ∩Cc = An. Let
us compare Un ∩Q and Fn ∩ P c which are respectively open and closed.

(Un ∩Q)∆(Fn ∩ P c) ⊂ [(Un∆Fn) ∩ (Q ∪ P c)] ∪ [(Q∆P c) ∩ (Un ∪ Fn)]

⊂ [C ∩ (Q ∪ P c)] ∪ [S ∩ (An ∪ C)]

⊂ S ∩ An

⊂ {an}

Because X\{an} is connected and C ∩ Un ∩ Q = ∅, it implies that Un ∩ Q ⊂ {an}. Moreover,
we know that {an} is not open, so Un ∩Q = ∅. In particular, an /∈ Q (because an ∈ An ⊂ Un), so
Q ∩ S = ∅ and P ∩Q = ∅.

To conclude, we see that P ∪
⋃
n≥0

Un and Q constitute an open partition of X , and so Q is trivial.

Indeed, we have already

(
P ∪

⋃
n≥0

Un

)
∩Q = (P ∩Q) ∪

⋃
n≥0

Un ∩Q = ∅. Plus, S ⊂
⋃
n≥0

Un so(
P ∪

⋃
n≥0

Un

)
∪Q = X .

Corollary 2. There exists an omega-flimsy space if and only if there exists an uncountable topo-
logical space in which the non-degenerate connected sets are exactly the cofinite sets.

Proof. By removing from an omega-flimsy space the finite number of singletons which are not
closed, we obtain a T1 omega-flimsy space. The finite connected subsets of a T1 space are de-
generate. The cofinite subsets are connected by definition. An omega-flimsy space is uncountable
because ∅ is always connected.
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