# Flimsy Spaces 

## DMI

## December 10, 2019

Definition. Let $n \geq 1$. A connected topological space $X$ is said to be $n$-flimsy if removing fewer then n arbitrary points leaves the space connected and removing any n arbitrary (distinct) points disconnects the space. $X$ has to have more than $n$ points.

For example, $\mathbb{R}$ is 1 -flimsy and $S^{1}$ is 2 -flimsy. In the following, we prove 3 -flimsy spaces do not exist.

Theorem 1. Let $X$ a 2-flimsy space and $x, y \in X$, with $x \neq y . \quad X \backslash\{x, y\}$ has exactly two connected components.

Proof. It is equivalent to show that $X \backslash\{x, y\}$ can not be covered by three disjoint non-empty open sets. Let be three open sets of $X, U_{1}, U_{2}$, and $U_{3}$, such that $\left(U_{1} \cup U_{2} \cup U_{3}\right) \cap\{x, y\}^{c}=X \backslash\{x, y\}$ and $U_{1} \cap U_{2} \cap\{x, y\}^{c}=U_{1} \cap U_{3} \cap\{x, y\}^{c}=U_{2} \cap U_{3} \cap\{x, y\}^{c}=\emptyset$. We are going to show by contradiction that there is $i \in\{1,2,3\}$ such that $U_{i} \cap\{x, y\}^{c}=\emptyset$ : let us suppose $\forall i \in\{1,2,3\}, U_{i} \cap\{x, y\}^{c} \neq \emptyset$.

We choose $u_{1} \in U_{1} \cap\{x, y\}^{c}$ and $u_{2} \in U_{2} \cap\{x, y\}^{c}$, so $u_{1} \notin U_{2} \cup U_{3}$ and $u_{2} \notin U_{1} \cup U_{3}$. We are going to prove $X \backslash\left\{u_{1}, u_{2}\right\}$ is connected, which contradicts that $X$ is 2-flimsy.
Let $U, V$ two open sets of $X$ such that $(U \cup V) \cap\left\{u_{1}, u_{2}\right\}^{c}=X \backslash\left\{u_{1}, u_{2}\right\}$ and $U \cap V \cap\left\{u_{1}, u_{2}\right\}^{c}=\emptyset$. We can suppose $x \in U$ without loss of generality, and so $x \notin V$.

1. $U \cup U_{1} \cup U_{2}$ and $V \cap U_{3}$ are open.

$$
\left(U \cup U_{1} \cup U_{2}\right) \cap\left(V \cap U_{3}\right) \subset(U \cap V) \cup\left(U_{1} \cap U_{3}\right) \cup\left(U_{2} \cap U_{3}\right) \subset\left\{u_{1}, u_{2}, x, y\right\} \text { but } x \notin V,
$$ and $u_{1}, u_{2} \notin U_{3}$ so $\left(U \cup U_{1} \cup U_{2}\right) \cap\left(V \cap U_{3}\right) \cap\{y\}^{c}=\emptyset$

$\left(U \cup U_{1} \cup U_{2}\right) \cup\left(V \cap U_{3}\right) \supset U_{1} \cup U_{2} \cup\left(U_{3} \cap(U \cup V)\right) \supset\left(U_{1} \cup U_{2} \cup U_{3}\right) \cap\left\{u_{1}, u_{2}\right\}^{c} \supset$ $X \backslash\left\{u_{1}, u_{2}, x, y\right\}$ but $x \in U, u_{1} \in U_{1}$, and $u_{2} \in U_{2}$ so $\left(\left(U \cup U_{1} \cup U_{2}\right) \cup\left(V \cap U_{3}\right)\right) \cap\{y\}^{c}=$ $X \backslash\{y\}$
$X$ is 2-flimsy so $X \backslash\{y\}$ is connected. Moreover $x \in\left(U \cup U_{1} \cup U_{2}\right) \cap\{y\}^{c} \neq \emptyset$.
So $\left(V \cap U_{3}\right) \cap\{y\}^{c}=\emptyset$
2. If $y \in V$, then $y \notin U$ and the previous step implies $\left(U \cap U_{3}\right) \cap\{x\}^{c}=\emptyset$. Then $U_{3} \cap\{x, y\}^{c} \subset$ $\left(U_{3} \cap U \cap\{x\}^{c}\right) \cup\left(U_{3} \cap V \cap\{y\}^{c}\right) \cup\left(U_{3} \cap\left\{u_{1}, u_{2}\right\}\right)=\emptyset$ which is false.
So $y \in U, y \notin V, V \cap U_{3}=\emptyset$, and $U_{3} \subset U$
3. $U \cup U_{1}$ and $V \cap U_{2}$ are open.
$\left(U \cup U_{1}\right) \cap\left(V \cap U_{2}\right) \subset(U \cap V) \cup\left(U_{1} \cap U_{2}\right) \subset\left\{x, y, u_{1}, u_{2}\right\}$ but $u_{1} \notin U_{2}$ and $x, y \notin V$ so $\left(U \cup U_{1}\right) \cap\left(V \cap U_{2}\right) \cap\left\{u_{2}\right\}^{c}=\emptyset$
$\left(U \cup U_{1}\right) \cup\left(V \cap U_{2}\right) \supset U_{1} \cup U \cup\left(U_{2} \cap(U \cup V)\right) \supset\left(U_{1} \cup U_{3} \cup U_{2}\right) \cap\left\{u_{1}, u_{2}\right\}^{c} \supset X \backslash\left\{u_{1}, u_{2}, x, y\right\}$ but $x, y \in U$, and $u_{1} \in U_{1}$ so $\left(\left(U \cup U_{1}\right) \cup\left(V \cap U_{2}\right)\right) \cap\left\{u_{2}\right\}^{c}=X \backslash\left\{u_{2}\right\}$
$X \backslash\left\{u_{2}\right\}$ is connected and $x \in\left(U \cup U_{1}\right) \cap\left\{u_{2}\right\}^{c} \neq \emptyset$ so $\left(V \cap U_{2}\right) \cap\left\{u_{2}\right\}^{c}=\emptyset$
4. With the same previous step, we have $\left(V \cap U_{1}\right) \cap\left\{u_{1}\right\}^{c}=\emptyset$.

So $V \cap\left\{u_{1}, u_{2}\right\}^{c} \subset\left(V \cap U_{1} \cap\left\{u_{1}\right\}^{c}\right) \cup\left(V \cap U_{2} \cap\left\{u_{2}\right\}^{c}\right) \cup\left(V \cap\left(U_{3} \cup\{x, y\}\right)\right)=\emptyset$. So, $X \backslash\left\{u_{1}, u_{2}\right\}$ is connected.

Theorem 2. A n-flimsy space is infinite.
Proof. see https://math.stackexchange.com/questions/2939445/flimsy-spaces-removing-any-n-points-results-in-disconnectedness for the proof of 'Babelfish'

Theorem 3. Let $X$ a n-flimsy space. $\forall x \in X,\{x\}$ is either open or closed.
Proof. We start with the case $n=1 . X$ is connected but $X \backslash\{x\}$ is disconnected. It exists a nontrivial clopen set $Y \subset X \backslash\{x\}$, in particular $Y \neq \emptyset$ and $Y \cup\{x\} \neq X$. Since $Y$ is open in $X \backslash\{x\}, Y$ or $Y \cup\{x\}$ is open in $X$.

- if $Y$ is open in $X$, by connectedness, $Y$ is not closed in $X$. Since $Y$ in closed in $X \backslash\{x\}$, $Y \cup\{x\}$ is closed in $X$. So, $\{x\}=(Y \cup\{x\}) \cap(X \backslash Y)$ is closed.
- if $Y \cup\{x\}$ is open in $X$, then $Y$ is closed in $X$, and $\{x\}=(Y \cup\{x\}) \cap(X \backslash Y)$ is open.

By induction, we suppose the theorem to be true for $n \geq 1$, and we observe $X$ a $(n+1)$-flimsy space and $x \in X . X$ is infinite, so there is $y, z \in X, y \neq z$, such that $\{x\}$ is either open in $X \backslash\{y\}$ and $X \backslash\{z\}$ or closed in $X \backslash\{y\}$ and $X \backslash\{z\}$, because $X \backslash\{y\}$ and $X \backslash\{z\}$ are $n$-flimsy. We suppose we are in the open case (the closed case can be examined in the same way).
If $\{x\}$ is not open in $X$ then $\{x, y\}$ and $\{x, z\}$ are open in $X$, so $\{x\}=\{x, y\} \cap\{x, z\}$ is open in $X$.

Lemma 1. Let $x, y \in X$, two distinct points of a 2 -flimsy space, and $C$ one of the two connected components of $X \backslash\{x, y\} . C \cup\{x\}$ and $C \cup\{y\}$ are connected.

Proof. By contradiction, we suppose $C \cup\{x\}$ is disconnected.
$C$ and $\{x\}$ are connected, so they are the only connected components of $C \cup\{x\}$, so $C$ is open and closed in $C \cup\{x\} \subset X \backslash\{y\}$. There is an open set $U$ of $X \backslash\{y\}$ such that $C=U \cap(C \cup\{x\})$
Moreover, $C$ is open and closed in $X \backslash\{x, y\}$, because it is one of its only two connected components, so $C$ or $C \cup\{x\}$ is open in $X \backslash\{y\}$. But we know $C=U \cap(C \cup\{x\})$, so in every case, $C$ is open in $X \backslash\{y\}$. The same shows $C$ is closed in $X \backslash\{y\} . C$ is not trivial so $X \backslash\{y\}$ is not connected: we have a contradiction.

Let $X$ a 2-flimsy space and $x, y, z$ three distinct points of $X$. We denote $C(\{x, y\}, z \in)$ the connected component of $X \backslash\{x, y\}$ which contains $z$, and $C(\{x, y\}, z \notin)$ the other one. We also denote $C(\{x, x\}, z \in)=X \backslash\{x\}$ and $C(\{x, x\}, z \notin)=\emptyset$.
Some relations and basic properties:
$C(\{x, y\}, z \in) \cup C(\{x, y\}, z \notin)=X \backslash\{x, y\}$ and $C(\{x, y\}, z \in) \cap C(\{x, y\}, z \notin)=\emptyset$.
If $a \neq x, y$, then $a \in C(\{x, y\}, z \in) \Leftrightarrow C(\{x, y\}, z \in)=C(\{x, y\}, a \in)$ and $a \in C(\{x, y\}, z \notin$ $) \Leftrightarrow C(\{x, y\}, z \notin)=C(\{x, y\}, a \in)$

Theorem 4. If $A$ is a connected subset of $X$, a 2-flimsy space, then $A^{c}$ is also connected.
Proof. If $A$ is trivial, the result is obvious. We can choose some $a \in A$ and $\psi \in A^{c}$. We begin to prove the following equality.

$$
A=\bigcap_{x \notin A} C(\{x, \psi\}, a \in)
$$

Let $x \notin A . A \subset X \backslash\{x, \psi\}$, and $a \in A \cap C(\{x, \psi\}, a \in) \neq \emptyset$, so $A \subset C(\{x, \psi\}, a \in)$ by connectedness. Moreover, $x \notin C(\{x, \psi\}, a \in)$, then $x \notin \bigcap_{y \notin A} C(\{y, \psi\}, a \in)$. We obtain a new equality, with the complements.

$$
A^{c}=\bigcup_{x \in A^{c}} C(\{x, \psi\}, a \notin) \cup\{x, \psi\}
$$

Thanks to the previous lemma, we know the $C(\{x, \psi\}, a \notin) \cup\{x, \psi\}$ are connected, and they all contain $\psi$, so their union is also connected.

Lemma 2. Let $x, t, s \in X$, three distinct points of a 2-flimsy space.

$$
\begin{gathered}
C(\{t, s\}, x \notin)=C(\{x, t\}, s \in) \cap C(\{x, s\}, t \in) \\
C(\{t, s\}, x \in)=C(\{x, t\}, s \notin) \cup C(\{x, s\}, t \notin) \cup\{x\}
\end{gathered}
$$

Proof. First we can remark that

$$
\begin{gathered}
X \backslash\{t, s\}=[C(\{x, t\}, s \in) \cap C(\{x, s\}, t \in)] \cup[C(\{x, t\}, s \notin) \cup C(\{x, s\}, t \notin) \cup\{x\}] \\
\emptyset=[C(\{x, t\}, s \in) \cap C(\{x, s\}, t \in)] \cap[C(\{x, t\}, s \notin) \cup C(\{x, s\}, t \notin) \cup\{x\}]
\end{gathered}
$$

so we only need to show these two sets are connected.
By the lemma 1, $C(\{x, t\}, s \notin) \cup\{x\}$ and $C(\{x, s\}, t \notin) \cup\{x\}$ are connected, so $C(\{x, t\}, s \notin) \cup C(\{x, s\}, t \notin) \cup\{x\}$ is connected as their union.
$[C(\{x, t\}, s \in) \cap C(\{x, s\}, t \in)]^{c}=C(\{x, t\}, s \notin) \cup C(\{x, s\}, t \notin) \cup\{x, t, s\}$ is connected, because $C(\{x, t\}, s \notin) \cup\{x, t\}$ and $C(\{x, s\}, t \notin) \cup\{x, s\}$ are connected. The complement of a connected set is connected, which concludes the proof.

Theorem 5. There are no 3-flimsy spaces.
Proof. Let $X$ a 3 -flimsy space and $x, y, t, s$ some distinct points of $X . X \backslash\{y\}$ is 2-flimsy, so if $C_{1}$ is the connected component of $X \backslash\{y, x, t\}$ containing $s$ and $C_{2}$ is the connected component of $X \backslash\{y, x, s\}$ containing $t$, then $D=C_{1} \cap C_{2}$ is one of the two connected components of $X \backslash\{y, t, s\}$. Moreover, $D$ is also one of the two connected components of $X \backslash\{x, t, s\}$, by using the lemma 2 in $X \backslash\{x\} . x, y, t, s \notin D$
So, $D$ is open and closed in $X \backslash\{x, t, s\}$ and in $X \backslash\{y, t, s\}$. We have two open sets of $X, U_{x}$ and $U_{y}$, and two closed sets of $X, G_{x}$ and $G_{y}$, such that
$U_{x} \cap\{x, t, s\}^{c}=G_{x} \cap\{x, t, s\}^{c}=D$ and $U_{y} \cap\{y, t, s\}^{c}=G_{y} \cap\{y, t, s\}^{c}=D$, so $y \notin U_{x}, G_{x}$ and $x \notin U_{y}, G_{y}$
$U_{x} \cap U_{y} \cap\{t, s\}^{c}=U_{x} \cap\{y, t, s\}^{c} \cap U_{y} \cap\{x, t, s\}^{c}=D \cap D=D$ and also, $G_{x} \cap G_{y} \cap\{t, s\}^{c}=D$. Since $U_{x} \cap U_{y}$ is open in $X$ and $G_{x} \cap G_{y}$ is closed in $X, D$ is open and closed in $X \backslash\{t, s\}$. Moreover, $D$ is not trivial because it is a connected component of $X \backslash\{x, t, s\}$. So $X \backslash\{t, s\}$ is not connected and $X$ is not 3 -flimsy.

Lemma 3. If $s, t, u, v \in X$ are distinct such that $v \in C(\{s, t\}, u \notin)$, then $s \in C(\{u, v\}, t \notin)$.
Proof.

$$
\begin{gathered}
C(\{u, v\}, t \notin)=C(\{u, t\}, v \in) \cap C(\{v, t\}, u \in) \\
v \in C(\{s, t\}, u \notin)=C(\{u, s\}, t \in) \cap C(\{u, t\}, s \in) \subset C(\{u, t\}, s \in)
\end{gathered}
$$

So $C(\{u, t\}, v \in)=C(\{u, t\}, s \in)$ and $s \in C(\{u, t\}, v \in)$.
Moreover, $v \in C(\{s, t\}, u \notin)$ is the same thing as $u \in C(\{s, t\}, v \notin)$.

$$
u \in C(\{s, t\}, v \notin)=C(\{v, s\}, t \in) \cap C(\{v, t\}, s \in) \subset C(\{v, t\}, s \in)
$$

So $C(\{v, t\}, u \in)=C(\{v, t\}, s \in)$ and $s \in C(\{v, t\}, u \in)$.
Finally, $s \in C(\{u, t\}, v \in) \cap C(\{v, t\}, u \in)=C(\{u, v\}, t \notin)$.
Theorem 6. If $X$ is a 2-flimsy space, then $X$ is a Hausdorff space.
Proof. Let $x \neq y$ two points of $X$. We choose some $a \in X$ distinct of $x$ and $y$, and we take some $b \in C(\{x, y\}, a \notin)$. Then, we choose $\tilde{b} \in C(\{x, a\}, b \notin)$ and $\tilde{a} \in C(\{y, b\}, a \notin)$. Obviously, $x, y, a, b, \tilde{a}, \tilde{b}$ are distinct. We are going to show that $C(\{b, \tilde{b}\}, x \in) \cap C(\{a, \tilde{a}\}, y \in)=\emptyset$.

Because $\tilde{b} \in C(\{x, a\}, b \notin)$, by using the lemma, we have $a \in C(\{b, \tilde{b}\}, x \notin)$ and so

$$
x \in C(\{b, \tilde{b}\}, x \in)=C(\{b, \tilde{b}\}, a \notin) \subset C(\{a, b\}, \tilde{b} \in)
$$

This implies $C(\{a, b\}, \tilde{b} \in)=C(\{a, b\}, x \in)$ and $C(\{b, \tilde{b}\}, x \in) \subset C(\{a, b\}, x \in)$.
With the same method, we have $C(\{a, \tilde{a}\}, y \in) \subset C(\{a, b\}, y \in)$. But since $b \in C(\{x, y\}, a \notin)$, by using the lemma, we have $y \in C(\{a, b\}, x \notin)$, so $C(\{a, b\}, y \in)=C(\{a, b\}, x \notin)$ and we conclude

$$
C(\{b, \tilde{b}\}, x \in) \cap C(\{a, \tilde{a}\}, y \in) \subset C(\{a, b\}, x \in) \cap C(\{a, b\}, x \notin)=\emptyset
$$

$C(\{b, \tilde{b}\}, x \in)$ is open in $X \backslash\{b, \tilde{b}\}$, so there is an open set $U$ of $X$ such that $U \cap\{b, \tilde{b}\}^{c}=$ $C(\{b, \tilde{b}\}, x \in)$. We have also $V$ an open set such that $V \cap\{a, \tilde{a}\}^{c}=C(\{a, \tilde{a}\}, y \in)$. In particular, $x \in U$ and $y \in V$.

$$
U \cap V \subset(C(\{b, \tilde{b}\}, x \in) \cup\{b, \tilde{b}\}) \cap(C(\{a, \tilde{a}\}, y \in) \cup\{a, \tilde{a}\})
$$

We need to show $a, \tilde{a} \notin C(\{b, \tilde{b}\}, x \in),(b, \tilde{b} \notin C(\{a, \tilde{a}\}, y \in)$ will follow by symmetry), to conclude $U \cap V=\emptyset$. However, we have already shown $a \in C(\{b, \tilde{b}\}, x \notin)$. Also recall that $C(\{b, \tilde{b}\}, x \in) \subset C(\{a, b\}, x \in)$.

$$
\tilde{a} \in C(\{y, b\}, a \notin) \subset C(\{a, b\}, y \in)=C(\{a, b\}, x \notin)
$$

So, $\tilde{a} \notin C(\{a, b\}, x \in)$ and $\tilde{a} \notin C(\{b, \tilde{b}\}, x \in)$.
Theorem 7. Let $X$ a 2-flimsy space, $x, y \in X$, and $C$ a connected component of $X \backslash\{x, y\}$. Then, $C$ is open in $X$ and $C \cup\{x, y\}$ is closed in $X$. Moreover, if $x \neq y$, then $C$ is the interior of $C \cup\{x, y\}$, and $C \cup\{x, y\}$ is the closure of $C$.
The connected components of $X$ without any two points form a base of a coarser topology on $X$. With this topology, $X$ is still a 2-flimsy space and the connected components of $X$ without any two points remain the same.

Proof. If $x=y, C=X \backslash\{x\}$ is open because $X$ is Hausdorff.
If $x \neq y, C$ is closed in $X \backslash\{x, y\}$, and since $\{x, y\}$ is closed in $X$ (Hausdorff), $C \cup\{x, y\}$ is closed in $X$. By the connectedness of $X, X \backslash\{x\}$, and $X \backslash\{y\}, C \cup\{x, y\}, C \cup\{y\}$, and $C \cup\{x\}$ are not open in $X$. However, $C$ is open in $X \backslash\{x, y\}$, so $C$ is open in $X$. The connectedness implies $C \cup\{y\}$ and $C \cup\{x\}$ are not closed in $X$, and the identities on the closure and the interior follow.
It is easy to verify that the intersection of two sets of the form $C(\{x, y\}, t \in)$ is either empty, either of the form $C(\{x, y\}, t \in)$, either an union of two sets of the form $C(\{x, y\}, t \in)$. In the topology generated by the $C(\{x, y\}, t \in)$, all the $C(\{x, y\}, t \in)$ are open and all the $C(\{x, y\}, t \in) \cup\{x, y\}$ are closed. So for any $x \neq y, X \backslash\{x, y\}$ is not connected.

## 1 Omega flimsy

### 1.1 Small results

In all this section, $X$ is an omega-flimsy topological space.
If $T$ is a countable infinite subset of $X$, then $X \backslash T$ is not connected. Thus, there are two open sets $U$ and $V$ of $X$, such that $U \cap V \subset T,(U \cup V)^{c} \subset T, U \cap T^{c} \neq \emptyset$, and $V \cap T^{c} \neq \emptyset$. But, it implies that $(U \cap V) \cup(U \cup V)^{c}$ is countable while $X \backslash\left[(U \cap V) \cup(U \cup V)^{c}\right]$ is disconnected. So, $(U \cap V) \cup(U \cup V)^{c}$ is infinite. Finally, by observing $(U \cap V)$ is open and $(U \cup V)^{c}$ is closed, we conclude

Lemma 4. If $T$ is a countable infinite subset of $X$, then there is an infinite $S \subset T$ which is open or closed.

Lemma 5. Except for a finite number of points, for all $x \in X,\{x\}$ is either open or closed.
Proof. Let us think by contradiction, and let us suppose $T=\left\{x_{n}, n \in \mathbb{N}\right\}$ is infinite countable subset of $X$ such that $\forall n \in \mathbb{N},\left\{x_{n}\right\}$ is nor open nor closed. Either, each infinite subset of $T$ contains a closed infinite subset, either $T$ has a subset $T^{\prime}$ which does not contain any closed infinite subset. So, each infinite subset of $T^{\prime}$ contains an open infinite subset. Without loss of generality, we can suppose each infinite subset of $T$ contains a closed infinite subset (the case with open is similar). We define $T_{n}=\left\{x_{p_{n}^{k}}, k \geq 1\right\}$ where $p_{n}$ is the $n$-th prime number. There are disjoint subsets of $T$.

For all $n \geq 1$, there is $S_{n} \subset T_{n}$, a closed infinite subset. We can construct a strictly increasing sequence $\left(a_{n}\right)_{n \geq 1}$ of indexes, such that $x_{a_{n}} \in S_{n}$ for all $n \geq 1$. But there is $S \subset\left\{x_{a_{n}}, n \geq 1\right\}$, which is closed and infinite. For an infinity of $n, S \cap S_{n}=\left\{x_{n}\right\}$ is closed, which is a contradiction.

The same argument can be adapted to show the following result.
Lemma 6. Let $T$ be a countable infinite subset of $X$ such that $\forall x \in T,\{x\}$ is closed. There is an infinite closed set $S \subset T$ with empty interior.

If $T$ does not contain any infinite closed subset, then each infinite subset of $T$ contains an open infinite subset, and there is $x \in T$ such that $\{x\}$ is open, which contradicts the connectedness of $X$. If $S$ is an infinite closed subset of $T$, then $S \backslash \stackrel{\circ}{S}=\partial S$ satisfies all the desired properties. In particular, it is infinite because $X$ is omega-flimsy.
PISTES POUR LES KAPPA, MAIS INUTILEs POUR LES OMEGA
If $S \subset T$ and if $A$ is a clopen set of $X \backslash S . B=A \cap T^{c}$ is a clopen set of $X \backslash T$ such that $B \subset A \subset B \cup T$. Now, we place ourselves in $X$. There is an open set $U$ and a closed set $F$ such that $U \cap S^{c}=F \cap S^{c}=A$ and $U \cap T^{c}=F \cap T^{c}=B$. But $B=U \cap T^{c}$ is also open. $B \cap F^{c} \subset T$ and since $B \cap F^{c}$ is open, $B \cap F^{c}=\emptyset$, or in other words $B \subset F$, because $T$ has an empty interior. In the same way, $U \subset \bar{B}$. So, $B \subset U \subset \stackrel{\circ}{\bar{B}} \subset \bar{B} \subset F \subset B \cup T$ and $\bar{B} \backslash \stackrel{\circ}{B} \subset S$.

Conversely, if $B$ is a clopen set of $X \backslash T$ such that $\bar{B} \backslash \stackrel{\circ}{B} \subset S$, then $A=\bar{B} \cap S^{c}=\stackrel{\circ}{B}_{\bar{B}}^{\square} S^{c}$ is a clopen set of $X \backslash S$ such that $B \subset A \subset B \cup T$.
Moreover, if $B=\emptyset$, then $U \subset T$, and since U is open, $U=\emptyset=A$. In the same way, if $B=X \backslash T$ then $A=X \backslash S$. So, $B$ is trivial if and only if $A$ is trivial.

Proposition 1. If $T$ is a countable infinite closed set with empty interior, then

- for any $B$ clopen set of $X \backslash T$, there is $A$ a clopen set of $X \backslash S$ such that $B \subset A \subset B \cup T$ if and only if $\bar{B} \backslash \stackrel{\dot{B}}{B} \subset S$.
- $X \backslash S$ is disconnected if and only if there is $B$ a non-trivial clopen set of $X \backslash T$ such that $\bar{B} \backslash \stackrel{\circ}{B} \subset S$.

We denote $S(B)=\bar{B} \backslash \stackrel{\circ}{B}$.
Definition. Let $T$ be a countable infinite set. A subset $\mathcal{A}$ of $\mathcal{P}(T)$ is said to be mirific in $T$ when:

- for all $A \in \mathcal{A}, A$ is infinite.
- for all infinite $S \subset T$, there is $A \in \mathcal{A}$ such that $A \subset T$

If $T$ is a countable infinite closed set with empty interior, then $\{S(B), B$ non-trivial clopen set of $X \backslash T\}$ is mirific in $T$.

Lemma 7. A mirific set can not be countable.
Proof. $\mathcal{A}=\left\{A_{n}, n \geq 1\right\}$ mirific in $\mathbb{N}$. Choose in each $A_{n}$ a $x_{n}$ distinct of the previous and such that $x_{n} \geq 2^{n}$ to find a contradiction

### 1.2 The connected subsets

The property of being omega-flimsy implies much more disconnectedness than it appears at first. We place ourselves in $X$, an omega-flimsy space.

Theorem 8. The connected subsets of an omega-flimsy space are either finite or cofinite.
Definition. A subset $T$ of $X$ is said to be alike either if $T$ is closed and $\stackrel{\circ}{T}=\emptyset$ or if $\forall x \in T,\{x\}$ is open.

By connectedness of $X$, if $T$ is alike and open (resp. closed), than its only closed (resp. open) subset is $\emptyset$. We have already proven that if $T$ is infinite, it has an infinite alike subset.

Lemma 8. If $T$ is a countable infinite alike subset of $X$, then $X \backslash T$ has an infinity of connected components.

Proof. We assume that $T$ is closed (interchanging the words 'closed' and 'open' gives the case where $T$ is open).

We begin by observing that if $A$ is a non-trivial clopen subset of $X \backslash T$ then

$$
\mathcal{F}_{A}=\left\{S \subset T, \exists B \text { clopen of } X \backslash S \text { such that } B \cap T^{c}=A\right\}
$$

is a filter on $T$. The facts that $T \in \mathcal{F}_{A}$ and $\left(R \subset S\right.$ and $\left.R \in \mathcal{F}_{A} \Longrightarrow S \in \mathcal{F}_{A}\right)$ are obvious. Moreover, $\emptyset \notin \mathcal{F}_{A}$ because $X$ is connected. Let $S_{1}, S_{2} \in \mathcal{F}_{A}$ and let us prove that $S_{1} \cap S_{2} \in \mathcal{F}_{A}$. We have $U_{1}, U_{2}$ some open sets in $X$ and $F_{1}, F_{2}$ some closed sets in $X$ such that $U_{1} \cap S_{1}^{c}=F_{1} \cap S_{1}^{c}$, $U_{2} \cap S_{2}^{c}=F_{2} \cap S_{2}^{c}$, and $F_{1} \cap T^{c}=F_{2} \cap T^{c}=A$. The set $\left(U_{1} \cup U_{1}\right) \cap\left(F_{1} \cap F_{2}\right)^{c}$ is open and included in $T$, so it is empty.

$$
\left(F_{1} \cap F_{2}\right) \backslash\left(U_{1} \cup U_{2}\right)=\left(F_{1} \backslash U_{1}\right) \cap\left(F_{2} \backslash U_{2}\right) \subset S_{1} \cap S_{2}
$$

So, $\left(F_{1} \cap F_{2}\right) \cap\left(S_{1} \cap S_{2}\right)^{c}=\left(U_{1} \cup U_{2}\right) \cap\left(S_{1} \cap S_{2}\right)^{c}$ and $\left(F_{1} \cap F_{2}\right) \cap T^{c}=A$, and $S_{1} \cap S_{2} \in \mathcal{F}_{A}$.
Now, by contradiction, we suppose that $X \backslash T$ has an finite number of connected components. Then, it also has a finite number of non-trivial clopen subsets (more precisely, if it has $n$ connected components than it has $2^{n}-2$ non-trivial clopen subsets). By considering a sequence of disjoint infinite subsets of $T$, one of them is not in any of the filters associated to those clopen subsets of $X \backslash T$. Indeed, if it was not the case, one of the filters would contain two disjoint subsets and so would contain $\emptyset$ which is impossible. We choose $S$ such subset of $T$. If $B$ is a clopen subset of $X \backslash S$, then $B \cap T^{c}$ is a clopen subset of $X \backslash T$ but is not a non-trivial clopen subset of $X \backslash T$, so $B \cap T^{c}=\emptyset$ or $T^{c}$. Without loss of generality (may by taking $(X \backslash S) \backslash B$ ), we can assume that $B \subset T$. Since $B$ is open in $X \backslash S$, there is an open subset $U$ such that $U \cap S^{c}=B$, so $U \subset T$ and $U=\emptyset$, thus $B=\emptyset$. The set $X \backslash S$ is connected which is a contradiction with the fact that $X$ is omega-flimsy.

The following lemma is a general result which is not too difficult to prove.
Lemma 9. Let $Y$ be a topological space with an infinity of connected components and let $C$ be a connected subset of $Y$. There exists a sequence $\left(A_{n}\right)_{n \geq 0}$ of disjoint non-empty clopen subsets, all disjoint from $C$.

## Proof. pRoOf Is LeFt FoR tHe ReAdEr

Now, we can begin to look at the connected subsets of $X$.
Proposition 2. If $C$ a connected subset and if $T$ is a countable infinite alike subset disjoint from $C$, then $C \cup T$ is not connected. Typically, if $C$ is a connected subset then $\bar{C} \backslash C$ is finite.

Proof. Let us suppose by contradiction that $C \cup T$ is connected. There exists a sequence $\left(A_{n}\right)_{n \geq 0}$ of disjoint non-empty clopen sets of $X \backslash T$, all disjoint from $C$ (because $C$ is connected and $T$ is alike).
First case: We suppose for all $n \geq 0$, there exists $a_{n} \in A_{n}$ such that $\left\{a_{n}\right\}$ is not open in $X$. In this case, we set $S=\left\{a_{n}, n \geq 0\right\}$.

Let $P$ and $Q$ two open sets of $X$ such that $P \cap Q \subset S$ and $X \backslash S \subset P \cup Q$. Then, $P \cap Q \cap(C \cup T)=\emptyset$ and $(P \cup Q) \cap(C \cup T)=C \cup T$ because $S$ is disjoint from $C \cup T$. Since $C \cup T$ is connected, we can assume without loss of generality that $C \cup T \subset P$ and $(C \cup T) \cap Q=\emptyset$. We are going to show that $Q=\emptyset$ which will contradict the disconnectedness of $X \backslash S$.

For all $n \geq 0$, we have $U_{n}$ an open set and $F_{n}$ a closed set such that $U_{n} \cap T^{c}=F_{n} \cap T^{c}=A_{n}$. Let us compare $U_{n} \cap Q$ and $F_{n} \cap P^{c}$ which are respectively open and closed.

$$
\begin{aligned}
\left(U_{n} \cap Q\right) \Delta\left(F_{n} \cap P^{c}\right) & \subset\left[\left(U_{n} \Delta F_{n}\right) \cap\left(Q \cup P^{c}\right)\right] \cup\left[\left(Q \Delta P^{c}\right) \cap\left(U_{n} \cup F_{n}\right)\right] \\
& \subset\left[T \cap\left(Q \cup P^{c}\right)\right] \cup\left[S \cap\left(A_{n} \cup T\right)\right] \\
& \subset S \cap A_{n} \\
& \subset\left\{a_{n}\right\}
\end{aligned}
$$

Because $X \backslash\left\{a_{n}\right\}$ is connected and $T \cap U_{n} \cap Q=\emptyset$, it implies that $U_{n} \cap Q \subset\left\{a_{n}\right\}$. Moreover, we know that $\left\{a_{n}\right\}$ is not open, so $U_{n} \cap Q=\emptyset$. In particular, $a_{n} \notin Q$ (because $a_{n} \in A_{n} \subset U_{n}$ ), so $Q \cap S=\emptyset$ and $P \cap Q=\emptyset$.
To conclude, we see that $P \cup \bigcup_{n \geq 0} U_{n}$ and $Q$ constitute an open partition of $X$, and so $Q$ is trivial. Indeed, we have already $\left(P \cup \bigcup_{n \geq 0} U_{n}\right) \cap Q=(P \cap Q) \cup \bigcup_{n \geq 0} U_{n} \cap Q=\emptyset$. Plus, $S \subset \bigcup_{n \geq 0} U_{n}$ so $\left(P \cup \bigcup_{n \geq 0} U_{n}\right) \cup Q=X$.
Second case: We assume $\forall n \geq 0, \forall a_{n} \in A_{n},\left\{a_{n}\right\}$ is open in $X$. We choose for each $n \geq 0$ some $a_{n} \in A_{n}$ and we set $S=\left\{a_{n}, n \geq 0\right\}$. $S$ is an open and alike subset of $X$. We remark $\left\{a_{n}\right\}$ is also closed in $X \backslash T$ because $\left\{a_{n}\right\}=A_{n} \backslash \bigcup_{\substack{a \in A_{n} \\ a \neq a_{n}}}\{a\}$. The connected set $\overline{\left\{a_{n}\right\}}$ is included in
$\left\{a_{n}\right\} \cup T$ and is not disjoint from $T$, otherwise $\left\{a_{n}\right\}$ would be a clopen set of $X$. We deduce that $C \cup T \cup\left\{a_{n}\right\}=C \cup T \cup \overline{\left\{a_{n}\right\}}$ is connected, and so is $C \cup T \cup S$.
Now, if $B$ is a closed set of $X \backslash S$ which contains only singletons that are open in $X$, then $B$ is open in $X$ as an union of open singletons. However, since $S$ is open in $X, B$ is also closed in $X$. By connectedness of $X, B=\emptyset$. Finally, with $C \cup T$ and $S$, we are under the assumptions of the first case.

Corollary 1. $\forall x \in X,\{x\}$ is not open. Except for a finite number of points, for all $x \in X,\{x\}$ is closed.

Proof. If $\{x\}$ is open, then $\overline{\{x\}}$ is infinite because $X$ is omega-flimsy, but can not be infinite because $\{x\}$ is connected.

Proposition 3. If $C$ is an infinite and co-infinite connected subset of $X$, then $X \backslash C$ has an infinity of connected components.

Proof. By contradiction, we write $X=\bigsqcup_{i=1}^{n} C_{i}$ where $n \in \mathbb{N}$, the $C_{i}$ are connected, and $C=C_{1}$. It
is not difficult to see

$$
\bar{C} \backslash \dot{C} \subset \bigcup_{i=1}^{n} \overline{C_{i}} \backslash C_{i}
$$

Hence, the set $\partial C=\bar{C} \backslash \dot{C}$ is finite and $\dot{C}$ is a clopen subset of $X \backslash \partial C$ which is connected. So, $\dot{C}=\emptyset$ or $\dot{C}=X \backslash \partial C$. In the first case, $C \subset \partial C$ is finite. In the second case, $C \supset X \backslash \partial C$ is cofinite.

We are finally able to prove the theorem.
Proof. Let $C$ be an infinite and co-infinite connected subset of $X$. According to the previous proposition, there exists a sequence $\left(A_{n}\right)_{n \geq 0}$ of disjoint non-empty clopen sets in $X \backslash C$. For all $n \geq 0$, we choose $a_{n} \in A_{n}$, and we automatically know such that $\left\{a_{n}\right\}$ is not open in $X$ (we even can ask closed in $X$ ). We set $S=\left\{a_{n}, n \geq 0\right\}$. The following of the proof is similar to the first case of the first proposition.
Let $P$ and $Q$ two open sets of $X$ such that $P \cap Q \subset S$ and $X \backslash S \subset P \cup Q$. Then, $P \cap Q \cap C=\emptyset$ and $(P \cup Q) \cap C=C$ because $S$ is disjoint from $C$. Since $C$ is connected, we can assume without loss of generality that $C \subset P$ and $C \cap Q=\emptyset$. We are going to show that $Q \subset S$ which will contradict the disconnectedness of $X \backslash S$.
For all $n \geq 0$, we have $U_{n}$ an open set and $F_{n}$ a closed set such that $U_{n} \cap C^{c}=F_{n} \cap C^{c}=A_{n}$. Let us compare $U_{n} \cap Q$ and $F_{n} \cap P^{c}$ which are respectively open and closed.

$$
\begin{aligned}
\left(U_{n} \cap Q\right) \Delta\left(F_{n} \cap P^{c}\right) & \subset\left[\left(U_{n} \Delta F_{n}\right) \cap\left(Q \cup P^{c}\right)\right] \cup\left[\left(Q \Delta P^{c}\right) \cap\left(U_{n} \cup F_{n}\right)\right] \\
& \subset\left[C \cap\left(Q \cup P^{c}\right)\right] \cup\left[S \cap\left(A_{n} \cup C\right)\right] \\
& \subset S \cap A_{n} \\
& \subset\left\{a_{n}\right\}
\end{aligned}
$$

Because $X \backslash\left\{a_{n}\right\}$ is connected and $C \cap U_{n} \cap Q=\emptyset$, it implies that $U_{n} \cap Q \subset\left\{a_{n}\right\}$. Moreover, we know that $\left\{a_{n}\right\}$ is not open, so $U_{n} \cap Q=\emptyset$. In particular, $a_{n} \notin Q$ (because $a_{n} \in A_{n} \subset U_{n}$ ), so $Q \cap S=\emptyset$ and $P \cap Q=\emptyset$.
To conclude, we see that $P \cup \bigcup_{n \geq 0} U_{n}$ and $Q$ constitute an open partition of $X$, and so $Q$ is trivial. Indeed, we have already $\left(P \cup \bigcup_{n \geq 0} U_{n}\right) \cap Q=(P \cap Q) \cup \bigcup_{n \geq 0} U_{n} \cap Q=\emptyset$. Plus, $S \subset \bigcup_{n \geq 0} U_{n}$ so $\left(P \cup \bigcup_{n \geq 0} U_{n}\right) \cup Q=X$.
Corollary 2. There exists an omega-flimsy space if and only if there exists an uncountable topological space in which the non-degenerate connected sets are exactly the cofinite sets.

Proof. By removing from an omega-flimsy space the finite number of singletons which are not closed, we obtain a T1 omega-flimsy space. The finite connected subsets of a T1 space are degenerate. The cofinite subsets are connected by definition. An omega-flimsy space is uncountable because $\emptyset$ is always connected.

