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All rings considered in this article are nontrivial, associative, unital, and not assumed
to be commutative.

1. Introduction
Various notions of weak inversibility in noncommutative rings have been considered, no-
tably (strong) von Neumann regularity [Neu36] and unit regularity. We introduce a class
of rings satisfying another weak form of divisibility. They are the fadelian and weakly
fadelian rings:¹

¹We named these rings after our colleague Assil Fadle, thanks to whom we got interested in this topic.
To our knowledge, this property has not previously been studied or given a name.

Definition 1.1.  A nontrivial ring 𝑅 is:
• fadelian if for any 𝑥 ∈ 𝑅 and any nonzero 𝑎 ∈ 𝑅, there exist 𝑏, 𝑐 ∈ 𝑅 such that 𝑥 =

𝑎𝑏 + 𝑐𝑎;
• weakly fadelian if for any nonzero 𝑎 ∈ 𝑅, there exist 𝑏, 𝑐 ∈ 𝑅 such that 1 = 𝑎𝑏 + 𝑐𝑎.

The properties of Definition 1.1 have already appeared in [LJL09, Theorem 3.2, (iv) and
(vii)] as equivalent characterizations of 𝑉 -domains in the case of atomic left principal
ideal domains. In that article, the left-right symmetry of the fadelianity property is used
to prove that left 𝑉 -domains and right 𝑉 -domains coincide. In this work, we study this
property outside of this context, to understand how it constrains the structure of a gen-
eral ring. The starting point is the natural sequence of implications:

𝑅 is a division ring ⇒ 𝑅 is fadelian ⇒ 𝑅 is weakly fadelian.

Asking whether these implications are equivalences, we try to construct counterexamples
when they are not. Our results are summed up in the following paragraph, which also
serves as an outline:
• In Section 2, we prove that weakly fadelian rings are simple domains (Proposition 2.1,

Theorem 2.2), and that weakly fadelian Ore rings are fadelian (Theorem 2.6).
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• In Section 3, we give necessary and sufficient conditions for a differential polynomial
ring to be fadelian (Proposition 3.2.1 and Theorem 3.3.1). The sufficient condition
is satisfied if the base ring is a differentially closed field — this gives first examples
of fadelian rings which are not division rings. In Theorem 3.4.1 and Theorem 3.5.2,
we transform this example into a countable non-Noetherian fadelian ring using ultra-
products and model-theoretic arguments.

• In Section 4, we construct a non-Ore fadelian ring (Theorem 4.4, Corollary 4.5), hence
proving that the implication of Theorem 2.6 is not an equivalence. The main tool
is the fact that rings of Laurent series over fadelian rings are themselves fadelian
(Theorem 4.3).

The main remaining question is whether there is a weakly fadelian ring which is not
fadelian. It is also worth investigating whether fadelian rings necessarily have the invari-
ant basis number property, which is weaker than the Ore condition. The authors thank
André Leroy and Maxime Ramzi, as well as the anonymous referee, for their interest and
their suggestions.

Remark 1.2.  The equation 𝑥 = 𝑎𝑏 + 𝑐𝑎 (solving for 𝑏, 𝑐 when 𝑥 and 𝑎 are fixed) defining
fadelian rings is visually similar to the “metro equation’’ 𝑎𝑥 − 𝑥𝑏 = 𝑑 (solving for 𝑥 when
𝑎, 𝑏, 𝑑 are fixed) [LL04] and to the exchange equation" 𝑥𝑎 − 𝑓𝑥 = 1 (where 𝑎 is fixed
and 𝑓 is idempotent) [KLN17]. However, the roles of parameters and indeterminates are
modified (in particular, our equation has two free variables). Furthermore, our focus lies
not on the equation itself but rather on understanding how its solvability impacts the
structure of a ring — just like the theory of division rings studies the consequences of
the solvability of the equation 1 = 𝑎𝑏 for all 𝑎 ≠ 0.

2. Properties of weakly fadelian rings
In this section, we prove properties of a fixed weakly fadelian ring 𝑅.² A first observation
is that if 𝑅 is commutative, it is a field. More generally:

²Proofs of Theorem 2.2 and Theorem 2.6 have been formalized in the Lean 4.2 proof assistant. The
code for this formalization is available at https://beranger-seguin.fr/dmi/fadelian/fad_rings4.lean.

Proposition 2.1.  The ring 𝑅 is simple.

Proof.  Let 𝐼 be a nonzero two-sided ideal of 𝑅. Let 𝑎 ∈ 𝐼 ∖ {0}. Since 𝑅 is weakly
fadelian, there are 𝑏, 𝑐 ∈ 𝑅 such that 1 = 𝑎𝑏 + 𝑐𝑎. We obtain 1 ∈ 𝐼 and finally 𝐼 = 𝑅. □

We now prove the following result, which is the first non-trivial observation concerning
weakly fadelian rings:

Theorem 2.2.  The ring 𝑅 is a domain.

The proof uses two lemmas:

Lemma 2.3.  Assume 𝑥, 𝑦 ∈ 𝑅 satisfy 𝑥𝑦 = 𝑦𝑥 = 0. Then 𝑥2 = 0 or 𝑦2 = 0.
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Proof.  If 𝑥 = 0, this is immediate. Otherwise, use weak fadelianity to write 1 = 𝑥𝑏 + 𝑐𝑥
for some 𝑏, 𝑐 ∈ 𝑅. Then:

𝑦2 = 𝑦 · 1 · 𝑦 = 𝑦(𝑥𝑏 + 𝑐𝑥)𝑦 = 𝑦𝑥𝑏𝑦 + 𝑦𝑐𝑥𝑦 = (𝑦𝑥)𝑏𝑦 + 𝑦𝑐(𝑥𝑦) = 0.

□

Lemma 2.4.  Assume 𝑥 ∈ 𝑅 satisfies 𝑥2 = 0. Then 𝑥 = 0.

Proof.  Assume by contradiction that 𝑥 is nonzero. Write:

1 = 𝑥𝑏 + 𝑐𝑥 (1)

for some 𝑏, 𝑐 ∈ 𝑅. Notice that:

𝑐𝑥 = 𝑐𝑥 · 1 = 𝑐𝑥(𝑥𝑏 + 𝑐𝑥) = 𝑐(𝑥2)𝑏 + (𝑐𝑥)2 = (𝑐𝑥)2.

Similarly, we have 𝑥𝑏 = (𝑥𝑏)2. Since 𝑥𝑏 = 1 − 𝑐𝑥, we know that 𝑥𝑏 and 𝑐𝑥 commute.
Hence:

(𝑥𝑏)(𝑐𝑥) = (𝑐𝑥)(𝑥𝑏) = 𝑐(𝑥2)𝑏 = 0.

By Lemma 2.3, we have (𝑥𝑏)2 = 0 or (𝑐𝑥)2 = 0, and thus 𝑥𝑏 = 0 or 𝑐𝑥 = 0. Assume for
example that 𝑥𝑏 = 0. Equation 1 becomes 1 = 𝑐𝑥, so 𝑥 is invertible, which contradicts
𝑥2 = 0. □

We finally prove Theorem 2.2:

Proof of Theorem 2.2.  Let 𝑥, 𝑦 ∈ 𝑅 such that 𝑥𝑦 = 0. Then (𝑦𝑥)2 = 𝑦(𝑥𝑦)𝑥 = 0, which
implies 𝑦𝑥 = 0 by Lemma 2.4. By Lemma 2.3, we deduce from 𝑥𝑦 = 𝑦𝑥 = 0 that either
𝑥2 = 0 or 𝑦2 = 0. Applying Lemma 2.4 again, we see that either 𝑥 or 𝑦 is zero. □

The Ore condition is a well-studied condition, equivalent to the existence of a ring of
fractions unique up to isomorphism [Ore31]. It is weaker than Noetherianity ([GR04,
Corollary 6.7, Gol58, Theorem 1]). We recall the definition:

Definition 2.5.  The domain 𝑅 is right (resp. left) Ore if any two nonzero right (resp.
left) ideals have a nonzero intersection.

The Ore condition interacts with fadelianity in the following way:

Theorem 2.6.  If the weakly fadelian ring 𝑅 is right Ore, then it is fadelian.

Proof.  Assume 𝑅 is right Ore. Let 𝑥, 𝑎 ∈ 𝑅 ∖ {0}. Since 𝑅 is right Ore, there are nonzero
elements 𝑏, 𝑐 ∈ 𝑅 such that 𝑎𝑏 = 𝑥𝑐. By Theorem 2.2, we have 𝑐𝑎 ≠ 0. Since 𝑅 is weakly
fadelian, there are elements 𝑘, 𝑘′ ∈ 𝑅 such that 1 = 𝑐𝑎𝑘 + 𝑘′𝑐𝑎. Finally:

𝑥 = 𝑥 · 1 = 𝑥𝑐𝑎𝑘 + 𝑥𝑘′𝑐𝑎 = 𝑎𝑏𝑎𝑘 + 𝑥𝑘′𝑐𝑎 ∈ 𝑎𝑅 + 𝑅𝑎.

This proves that 𝑅 is fadelian. □

In Corollary 4.5, we will see that Theorem 2.6 is not an equivalence.
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3. Fadelianity and differential polynomial rings
In this section, we give conditions (both necessary and sufficient) for a differential poly-
nomial ring to be fadelian.

3.1. Differential polynomial rings

Definition 3.1.1.  Let 𝑘 be a commutative field and 𝑅 be a central 𝑘-algebra. A deriva-
tion of 𝑅 is a nonzero 𝑘-linear map 𝛿 : 𝑅 → 𝑅 such that 𝛿(𝑎𝑏) = 𝛿(𝑎)𝑏 + 𝑎𝛿(𝑏) for all
𝑎, 𝑏 ∈ 𝑅. We say that (𝑅, 𝛿) is a differential algebra.

We fix a differential algebra (𝑅, 𝛿). Note that 𝛿(1) = 𝛿(1 · 1) = 2𝛿(1) and hence 𝛿(1) =
0. In particular, 𝛿 is a non-invertible endomorphism. We now define differential polyno-
mial rings:

Definition 3.1.2.  For every 𝑥 ∈ 𝑅, let ̃𝑥 ∈ End(𝑅) be the left multiplication endomor-
phism mapping an element 𝑦 ∈ 𝑅 to the element 𝑥𝑦. We denote by 𝑅[𝛿] the subalgebra
of End(𝑅) generated by the derivation 𝛿 and the endomorphisms ̃𝑥 for 𝑥 ∈ 𝑅.

An introduction to differential polynomial rings (under the name “formal differential
operator rings”) is found in [GR04, Chapter 2]. These rings are particular cases of Ore
extensions.

Remark 3.1.3.  The ring 𝑅[𝛿] contains the nonzero non-invertible endomorphism 𝛿, and
is therefore never a division ring.

The map 𝑥 ↦ ̃𝑥 is an embedding of 𝑅 into 𝑅[𝛿]. We see 𝑅 as a subalgebra of 𝑅[𝛿], i.e.
we identify elements 𝑥 ∈ 𝑅 with their associated left multiplication endomorphism ̃𝑥 ∈
𝑅[𝛿]. To avoid any confusion between 𝛿𝑥 = 𝛿 ∘ ̃𝑥 ∈ 𝑅[𝛿] and 𝛿(𝑥) ∈ 𝑅, we now solely use
the notation 𝑥′ when evaluating 𝛿 at an element 𝑥 ∈ 𝑅. By 𝑥𝑛, we mean 𝛿𝑛(𝑥).

Remark 3.1.4.  Let 𝑥 ∈ 𝑅. The identity (𝑥𝑦)′ = 𝑥′𝑦 + 𝑥𝑦′ for 𝑦 ∈ 𝑅 gives the equality
𝛿𝑥 = 𝑥′ + 𝑥𝛿 of endomorphisms in 𝑅[𝛿], which can be rewritten as [𝛿, 𝑥] = 𝑥′, where [𝑎, 𝑏]
stands for the commutator 𝑎𝑏 − 𝑏𝑎. In particular, the ring 𝑅[𝛿] is noncommutative: no
𝑥 ∈ 𝑅 ∖ ker(𝛿) commutes with 𝛿.

3.2. Necessary conditions for 𝑅[𝛿] to be fadelian
We prove Proposition 3.2.1, which gives necessary conditions on the differential algebra
(𝑅, 𝛿) for 𝑅[𝛿] to be weakly fadelian. A consequence is that this construction cannot give
examples of weakly fadelian rings which are not fadelian.

Proposition 3.2.1.  Let (𝑅, 𝛿) be a differential algebra such that 𝑅[𝛿] is weakly fadelian.
Then:
• 𝑅 is a division ring;
• 𝑅[𝛿] is fadelian;
• every nonzero element of 𝑅[𝛿] is surjective as an endomorphism of 𝑅.

Note that the condition that every nonzero endomorphism of 𝑅[𝛿] is surjective means
that 𝑅 contains solutions to all nontrivial linear “differential equations”.
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Proof of Proposition 3.2.1.  Let 𝑎 be a nonzero element of 𝑅. In 𝑅[𝛿], write by weak
fadelianity:

1 = 𝑏𝑎𝛿 + 𝑎𝛿𝑐

with 𝑏, 𝑐 ∈ 𝑅[𝛿]. Evaluate this equality of endomorphisms at 1 ∈ 𝑅:

1 = 𝑏(𝑎 · 1′) + 𝑎 · (𝑐(1))′ = 𝑎 · (𝑐(1))′.

The element (𝑐(1))′ ∈ 𝑅 is an inverse of 𝑎 in 𝑅. This shows that 𝑅 is a division ring. In
particular, 𝑅 is right Noetherian. By [GR04, Theorem 2.6], 𝑅[𝛿] is right Noetherian too.
In particular, 𝑅[𝛿] is Ore by [Gol58, Theorem 1]. Finally, Theorem 2.6 implies that 𝑅[𝛿]
is fadelian.

Now, consider a nonzero element 𝑢 ∈ 𝑅[𝛿]. Let 𝑎 ∈ 𝑅. By fadelianity of 𝑅[𝛿], write:

𝑎 = 𝑑(𝑢𝛿) + (𝑢𝛿)𝑒

with 𝑑, 𝑒 ∈ 𝑅[𝛿]. Evaluate this equality of endomorphisms at 1 ∈ 𝑅 to obtain:

𝑎 = 𝑑(𝑢(1′)) + 𝑢(𝑒(1)′) = 𝑢(𝑒(1)′) ∈ Im(𝑢).

This proves the surjectivity of 𝑢. □

3.3. A criterion for the fadelianity of 𝑅[𝛿]
The main theorem of this subsection is the following:

Theorem 3.3.1.  Let (𝑅, 𝛿) be a differential algebra with 𝑅 commutative. The ring 𝑅[𝛿]
is weakly fadelian if and only if 𝑅 is a field and every nonzero element of 𝑅[𝛿] is surjective
as an endomorphism of 𝑅.

Theorem 3.3.1 gives the first interesting examples of fadelian rings:

Corollary 3.3.2.  If (𝑘, 𝛿) is a differentially closed field with 𝛿 ≠ 0, the ring 𝑘[𝛿] is fadelian
and is not a division ring.

Differentially closed fields and the existence of differential closures for fields were consid-
ered in [Rob59]. See [Mar02, Theorem 6.4.10] for a modern approach, and for details
about the model theory of differential fields.

The constructions of this subsection are not new: the examples of fadelian rings con-
structed using Corollary 3.3.2 are similar to the examples of 𝑉 -domains constructed by
Cozzens in [CF75, Theorem 5.21], which are fadelian by [LJL09, Theorem 3.2]. However,
our proofs are direct and avoid the theory of 𝑉 -rings and their modules completely.

The direct implication in Theorem 3.3.1 is a special case of Proposition 3.2.1. There-
fore, we focus on proving the converse. We now assume that 𝑅 is a differential
(commutative) field and that every nonzero endomorphism in 𝑅[𝛿] is surjec-
tive, and our goal is to prove that 𝑅[𝛿] is fadelian.

3.3.1. Euclidean division

Lemma 3.3.1.1.  Every element 𝑢 ∈ 𝑅[𝛿] admits a unique representation as a sum:
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𝑢 = ∑
𝑖≥0

𝑎𝑖𝛿𝑖

where all but finitely many elements 𝑎𝑖 ∈ 𝑅 are zero.

Proof.  The existence follows the fact that one can use the equality 𝛿𝑎 = 𝑎𝛿 + 𝑎′ repeat-
edly to make sure that all occurrences of 𝛿 are on the right side of each term of 𝑢. Let
us prove the uniqueness. Assume that, for some sequences (𝑎𝑖) and (𝑏𝑖) of elements of
𝑅 (all zero but finitely many), we have ∑ 𝑎𝑖𝛿𝑖 = ∑ 𝑏𝑖𝛿𝑖. By hypothesis, 𝛿 ∈ 𝑅[𝛿] ∖ {0}
is surjective, so we fix elements 𝑥𝑛 ∈ 𝑅 such that (𝑥𝑛)(𝑛) = 1. We show inductively that
𝑎𝑖 = 𝑏𝑖 for all 𝑖 ∈ ℤ≥0. First, evaluate the equality ∑ 𝑎𝑖𝛿𝑖 = ∑ 𝑏𝑖𝛿𝑖 at 0 to obtain 𝑎0 =
𝑏0. Now assume 𝑎𝑖 = 𝑏𝑖 for all 𝑖 < 𝑘. We have:

(∑ 𝑎𝑖𝛿𝑖)(𝑥𝑘) − ∑
𝑘−1

𝑖=0
𝑎𝑖𝑥

(𝑖)
𝑘 = ∑

𝑖≥𝑘
𝑎𝑖𝑥

(𝑖)
𝑘 = 𝑎𝑘

but also:

(∑ 𝑎𝑖𝛿𝑖)(𝑥𝑘) − ∑
𝑘−1

𝑖=0
𝑎𝑖𝑥

(𝑖)
𝑘 = (∑ 𝑏𝑖𝛿𝑖)(𝑥𝑘) − ∑

𝑘−1

𝑖=0
𝑏𝑖𝑥

(𝑖)
𝑘 = ∑

𝑖≥𝑘
𝑏𝑖𝑥

(𝑖)
𝑘 = 𝑏𝑘.

So 𝑎𝑘 = 𝑏𝑘. This concludes the proof. □

Definition 3.3.1.2.  Let 𝑢 ∈ 𝑅[𝛿], decomposed as 𝑢 = ∑ 𝑎𝑖𝛿𝑖 as in Lemma 3.3.1.1. If
𝑢 ≠ 0, the degree 𝜃(𝑢) of 𝑢 is the largest 𝑖 such that 𝑎𝑖 ≠ 0. Moreover, we let 𝜃(0) = −∞.

Consider the skew polynomial ring 𝑅[𝑥; 𝛿] (cf. [GR04, Chapter 2]). The uniqueness part
of Lemma 3.3.1.1 means that the surjective map

{𝑅[𝑥; 𝛿] → 𝑅[𝛿]
𝑥 ↦ 𝛿

is injective, i.e. that 𝛿 is not algebraic (under the assumption that it is surjective). In
other words, 𝑅[𝛿] is isomorphic to the skew polynomial ring 𝑅[𝑥; id, 𝛿]. Since 𝑅[𝑥; 𝛿] is
right and left Euclidean [Ore33, Section I.2], we directly obtain:

Lemma 3.3.1.3.  The map 𝜃 : 𝑅[𝛿] → ℤ≥0 ∪ {−∞} is a Euclidean valuation for which
𝑅[𝛿] admits left and right Euclidean division. In particular, 𝑅[𝛿] is a (left and right)
principal ideal domain.

For instance, left Euclidean division means that if 𝑥, 𝑦 ∈ 𝑅[𝛿] with 𝑦 ≠ 0, there exist
𝑞, 𝑟 ∈ 𝑅[𝛿] such that 𝑥 = 𝑞𝑦 + 𝑟 and 𝜃(𝑟) < 𝜃(𝑦). This can also be proved directly by
induction on 𝜃(𝑥).

3.3.2. Diagonally dominant systems in differential fields

Lemma 3.3.2.1.  Consider a system of equations of the form:

∀𝑗 ∈ {0, …, 𝑟}, ∑
𝑟

𝑖=0
𝑃𝑖,𝑗(𝑏𝑖) = 𝑥𝑗
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in the indeterminates 𝑏0, …, 𝑏𝑟, where 𝑥𝑗 ∈ 𝑅 and 𝑃𝑖,𝑗 ∈ 𝑅[𝛿]. Assume moreover that:

∀𝑗 ∈ {0, …, 𝑟}, 𝜃(𝑃𝑗,𝑗) > max
𝑖≠𝑗

𝜃(𝑃𝑖,𝑗).

Then, the system admits a solution (𝑏0, …, 𝑏𝑟) ∈ 𝑅𝑟+1.

Proof.  In Lemma 3.3.1.3, we have established that 𝑅[𝛿] is a left principal ideal domain.
By the noncommutative version of the Smith normal form [Jac43, Chapter 3, Theorem
16], the square matrix

𝑃 = (𝑃𝑖,𝑗)0≤𝑖,𝑗≤𝑟

with coefficients in 𝑅[𝛿] associated to our system is equivalent to a diagonal matrix ̃𝑃 =
Diag(𝑃0, …, 𝑃𝑟). More precisely, there are invertible square matrices 𝐴, 𝐵 of size 𝑟 + 1
with coefficients in 𝑅[𝛿] such that ̃𝑃𝐴 = 𝐵𝑃 . Our original system has a solution if and
only if there is a solution to the equivalent diagonal system, which is of the form ∀𝑗 ∈
{0, …, 𝑟}, 𝑃𝑗(𝑏𝑗) = 𝑥𝑗. Since all nonzero endomorphisms in 𝑅[𝛿] are surjective, it suffices
(to prove the existence of a solution) to prove that the diagonal coefficients 𝑃𝑗 are all
nonzero. Assume that 𝑃𝑘 = 0 for some 𝑘 ∈ {0, …, 𝑟}, and let 𝑒𝑘 be the line vector whose
coordinates are all zero except the 𝑘-th coordinate which is 1. Then, 𝑃𝑘 = 0 rewrites as
𝑒𝑘

̃𝑃 = 0, and thus 𝑒𝑘𝐵𝑃 = 𝑒𝑘
̃𝑃𝐴 = 0. Since 𝐵 is invertible and 𝑒𝑘 ≠ 0, we know that

the line vector 𝑒𝑘𝐵 is nonzero.
We shall prove that this is contradictory by showing that for every line vector 𝑥 ∈

𝑅[𝛿]𝑟+1, the equality 𝑥𝑃 = 0 implies 𝑥 = 0. Assume that 𝑥𝑃 = 0 for some nonzero vector
𝑥 ∈ 𝑅[𝛿]𝑟+1, i.e.

∀𝑗, ∑
𝑟

𝑖=0
𝑥𝑖𝑃𝑖,𝑗 = 0.

Choose an index 𝑚 ∈ {0, …, 𝑟} such that 𝜃(𝑥𝑚) ≥ 𝜃(𝑥𝑖) for all 𝑖. We have:

∑
𝑖≠𝑚

𝑥𝑖𝑃𝑖,𝑚 = −𝑥𝑚𝑃𝑚,𝑚

and therefore:

𝜃(𝑥𝑚) ≤ max
𝑖≠𝑚

(𝜃(𝑥𝑖) + 𝜃(𝑃𝑖,𝑚)) − 𝜃(𝑃𝑚,𝑚)

< 𝜃(𝑥𝑚) + 𝜃(𝑃𝑚,𝑚) − 𝜃(𝑃𝑚,𝑚)
= 𝜃(𝑥𝑚)

which is a contradiction. This concludes the proof. □

Proof of Theorem 3.3.1.  The necessary condition in Theorem 3.3.1 follows from
Proposition 3.2.1. Let (𝑅, 𝛿) be a differential field such that every endomorphism in 𝑅[𝛿]
is surjective. Choose a nonzero element 𝑥 ∈ 𝑅[𝛿] and write it as:

𝑥 = ∑
𝑛

𝑖=0
𝑥𝑖𝛿𝑖
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with 𝑥𝑛 ≠ 0 (cf. Lemma 3.3.1.1). To prove that 𝑅[𝛿] is weakly fadelian, we want
to find 𝑏, 𝑐 ∈ 𝑅[𝛿] such that 𝑏𝑥 + 𝑥𝑐 = 1. It suffices for this to find coefficients
𝑏0, …, 𝑏𝑛−1, 𝑐0, …, 𝑐𝑛−1 ∈ 𝑅 such that:

(∑
𝑛−1

𝑖=0
𝑏𝑖𝛿𝑖)(∑

𝑛

𝑖=0
𝑥𝑖𝛿𝑖) + (∑

𝑛

𝑖=0
𝑥𝑖𝛿𝑖)(∑

𝑛−1

𝑖=0
𝑐𝑖𝛿𝑖) = 1.

Rewrite this as:

1 = ∑
𝑛−1

𝑖=0
∑

𝑛

𝑗=0
[(∑

𝑖

𝑘=0
𝑏𝑖(

𝑖
𝑘)𝑥(𝑘)

𝑗 𝛿𝑖−𝑘+𝑗) + (∑
𝑗

𝑘=0
𝑥𝑗(

𝑗
𝑘
)𝑐(𝑘)

𝑖 𝛿𝑗−𝑘+𝑖)]

= ∑
𝑛−1

𝑖=0
∑

𝑛

𝑗=0
∑

𝑛

𝑘=0
(𝑏𝑖(

𝑖
𝑘)𝑥(𝑘)

𝑗 + 𝑥𝑗(
𝑗
𝑘
)𝑐(𝑘)

𝑖 )𝛿𝑖+𝑗−𝑘

By Lemma 3.3.1.1, the coefficients in the decomposition of 1 are unique. So, we get a
system of equations: for each 𝑑 ∈ {0, …, 2𝑛 − 1} (playing the role of 𝑖 + 𝑗 − 𝑘) we must
solve:

∑
𝑛−1

𝑖=0
∑

𝑛

𝑗=0
𝑏𝑖(

𝑖
𝑖 + 𝑗 − 𝑑)𝑥(𝑖+𝑗−𝑑)

𝑗 + 𝑥𝑗(
𝑗

𝑖 + 𝑗 − 𝑑)𝑐(𝑖+𝑗−𝑑)
𝑖 = 𝛿𝑑,0. (2)

For 𝑑 = 2𝑛 − 1, we get 𝑏𝑛−1𝑥𝑛 + 𝑥𝑛𝑐𝑛−1 = 0. Thus, we can express 𝑏𝑛−1 as a function of
𝑐𝑛−1. Similarly, letting 𝑑 = 2𝑛 − 2 lets one express 𝑏𝑛−2 as a function of (the derivatives
of) 𝑐𝑛−2 and 𝑐𝑛−1, and so on until 𝑑 = 𝑛. This process yields elements 𝐴𝑖,𝑗 ∈ 𝑅[𝛿] such
that:

𝑏𝑖 = ∑
𝑛−1

𝑗=𝑖
𝐴𝑖,𝑗(𝑐𝑗) (3)

and such that 𝜃(𝐴𝑖,𝑗) ≤ 𝑛 − 𝑖 − 1 ≤ 𝑛 − 1. Substitute 𝑏𝑖 for ∑𝑗 𝐴𝑖,𝑗(𝑐𝑗) in Equation 2
for 0 ≤ 𝑑 ≤ 𝑛 − 1 to obtain a system of 𝑛 equations of the form:

∑
𝑛−1

𝑖=0
𝑃𝑖,𝑑(𝑐𝑖) = 𝛿𝑑,0. (4)

The expression of 𝑏𝑖 in Equation 3 involves only derivatives of 𝑐𝑖, 𝑐𝑖+1, …, 𝑐𝑛−1 up to the
(𝑛 − 1)-th derivative. Thus, the only 𝑛-th derivatives that may appear in 𝑃𝑖,𝑑 are in
the terms:

𝑥𝑗(
𝑗

𝑖 + 𝑗 − 𝑑)𝑐(𝑖+𝑗−𝑑)
𝑖 .

If 𝑑 < 𝑖, the binomial coefficient is zero. If 𝑑 > 𝑖, the derivative is of order 𝑖 + 𝑗 − 𝑑 < 𝑛.
If 𝑑 = 𝑖, the term obtained for 𝑗 = 𝑛 is 𝑥𝑛𝑐(𝑛)

𝑑  which effectively involves an 𝑛-th derivative
with the nonzero coefficient 𝑥𝑛. This shows:

𝜃(𝑃𝑑,𝑑) = 𝑛 and 𝜃(𝑃𝑖,𝑑) ≤ 𝑛 − 1 for 𝑖 ≠ 𝑑.
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Hence the system given by Equation 4 is diagonally dominant and thus admits a solution
by Lemma 3.3.2.1. This proves that 𝑅[𝛿] is weakly fadelian. □

Remark 3.3.2.2.  We have another sufficient condition that does not require 𝑅 to be
commutative, but requires that all possible nonconstant polynomial differential equations
have a solution in 𝑅, and not only linear ones. These are equations that may look some-
thing like:

𝑎(𝑋(19))2𝑏𝑋′ − 𝑐𝑋′𝑑𝑋𝑒𝑋(3) = 0.

We do not include the proof here since this has not yielded new examples.

3.4. A non-Noetherian fadelian ring
We prove the following theorem:

Theorem 3.4.1.  There exists a non-Noetherian³ fadelian ring.

³By non-Noetherian, we systematically mean “neither left nor right Noetherian”.

Proof.  The key idea is that fadelianity is a first order property, and thus is preserved
by ultrapowers, whereas Noetherianity is not. Let (𝑘, 𝛿) be a differentially closed field
as above, with 𝛿 ≠ 0. Then 𝑘[𝛿] is fadelian by Theorem 3.3.1. Let 𝒰 be a non-principal
ultrafilter on ℕ. The following ring is fadelian by Łoś’s theorem [Mar02, Exercise 2.5.18] :

𝑘[𝛿]𝒰 =
𝑘[𝛿]ℕ

𝒰

Let 𝑒𝑛 ∈ 𝑘[𝛿]𝒰 be the coset of:

𝑒𝑛 =
⎝
⎜⎜⎛1𝑘[𝛿], 1𝑘[𝛿], …, 1𝑘[𝛿]⏟⏟⏟⏟⏟⏟⏟

𝑛

, 𝛿, 𝛿2, 𝛿3, …
⎠
⎟⎟⎞ ∈ 𝑘[𝛿]ℕ.

Let 𝐼𝑛 be the left ideal of 𝑘[𝛿]𝒰 generated by 𝑒𝑛. We have:

𝑒𝑛−1 =
⎝
⎜⎜
⎛1𝑘[𝛿], 1𝑘[𝛿], …, 1𝑘[𝛿]⏟⏟⏟⏟⏟⏟⏟

𝑛−1

, 𝛿, 𝛿, 𝛿, …
⎠
⎟⎟
⎞𝑒𝑛.

So 𝑒𝑛+1 ∈ 𝐼𝑛, and the sequence of left ideals (𝐼𝑛) is nondecreasing. We prove that it is
strictly increasing by contradiction. Assume 𝑒𝑛 ∈ 𝐼𝑛−1 for some 𝑛 ≥ 0. Then there is an
element 𝑎 ∈ 𝑘[𝛿]ℕ such that:

𝑒𝑛 ∼ 𝑎𝑒𝑛−1 = (𝑎1, …, 𝑎𝑛−1, 𝑎𝑛𝛿, 𝑎𝑛+1𝛿2, …).

Consider the map 𝜓 : 𝑘[𝛿] → ℤ≥0 ∪ {+∞} defined in the following way: 𝜓(0) = +∞, and
otherwise write 𝑥 = ∑ 𝑎𝑖𝛿𝑖 as in Lemma 3.3.1.1 and let 𝜓(𝑥) = min{𝑖 | 𝑎𝑖 ≠ 0}. For an
element ̂𝑥 ∈ 𝑘[𝛿]ℕ, denote by 𝜓( ̂𝑥) the element of (ℤ≥0 ∪ {+∞})ℕ obtained by evaluating
𝜓 coordinatewise. Using ≥ to notate coordinatewise inequality, we have:
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𝜓(𝑎𝑒𝑛−1) = (𝜓(𝑎0), …, 𝜓(𝑎𝑛−1), 𝜓(𝑎𝑛) + 1, 𝜓(𝑎𝑛+1) + 2, …)

≥
⎝
⎜⎜⎛0, …, 0⏟

𝑛−1

, 1, 2, 3, 4, …
⎠
⎟⎟⎞.

On the other hand:

𝜓(𝑒𝑛) =
⎝
⎜⎜⎛0, …, 0⏟

𝑛−1

, 0, 1, 2, 3, …
⎠
⎟⎟⎞.

Therefore 𝑒𝑛 and 𝑎𝑒𝑛−1 may only have finitely many common coefficients, which contra-
dicts the equivalence 𝑒𝑛 ∼ 𝑎𝑒𝑛−1. So (𝐼𝑛) is a strictly increasing sequence of left ideals.
This contradicts left Noetherianity. We prove similarly that 𝑘[𝛿]𝒰 is not right Noether-
ian. □

3.5. A countable non-Noetherian fadelian ring
We prove Theorem 3.5.2, which states that there exists a countable non-Noetherian
fadelian ring. First, we prove the following lemma:

Lemma 3.5.1.  Let 𝑅 be a fadelian ring and 𝑆 be a subset of 𝑅. Let 𝜅 be the cardinal
max(ℵ0, |𝑆|). There is a fadelian subring of 𝑅 of cardinality ≤ 𝜅 which contains 𝑆.

Proof.  We construct a sequence 𝑅𝑖 of subrings of 𝑅 of cardinality ≤ 𝜅 in the following
way:
• 𝑅0 is the subring of 𝑅 generated by 𝑆;
• Assume we have constructed 𝑅𝑛. For every couple 𝑥, 𝑎 ∈ 𝑅𝑛 such that 𝑎 ≠ 0, choose

elements 𝑏𝑛(𝑥, 𝑎) and 𝑐𝑛(𝑥, 𝑎) in 𝑅 such that 𝑥 = 𝑎𝑏𝑛(𝑥, 𝑎) + 𝑐𝑛(𝑥, 𝑎)𝑎, using the fact
that 𝑅 is fadelian. Let 𝑅𝑛+1 be the subring of 𝑅 generated by 𝑅𝑛 and the elements
𝑏𝑛(𝑥, 𝑎), 𝑐𝑛(𝑥, 𝑎) for all pairs 𝑥, 𝑎 ∈ 𝑅𝑛 with 𝑎 ≠ 0.

Finally, define:

𝑅∞ = ⋃
𝑛≥0

𝑅𝑛.

Since 𝑅∞ is the increasing union of a countable family of rings of cardinality ≤ 𝜅 con-
taining 𝑆, it is itself a ring of cardinality ≤ 𝜅 containing 𝑆. To prove that 𝑅∞ is fadelian,
consider elements 𝑥, 𝑎 ∈ 𝑅∞ with 𝑎 ≠ 0. There exists 𝑛 ∈ ℕ such that both 𝑥 and 𝑎 are
in 𝑅𝑛. In 𝑅𝑛+1 and therefore in 𝑅∞, we have 𝑥 = 𝑎𝑏𝑛(𝑥, 𝑎) + 𝑐𝑛(𝑥, 𝑎)𝑎. This proves that
𝑅∞ is fadelian. □

Theorem 3.5.2.  There exists a countable non-Noetherian fadelian ring.

Proof.  Start with the non-Noetherian fadelian ring 𝑅 = 𝑘[𝛿]𝒰 obtained in the proof of
Theorem 3.4.1. Let 𝑆 be the countable subset {𝑢, 𝑒0, 𝑒1, 𝑒2, …} of 𝑅, where 𝑢 is the coset
of (𝛿, 𝛿, 𝛿, …) ∈ 𝑘[𝛿]ℕ and 𝑒𝑛 is the coset of:
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𝑒𝑛 =
⎝
⎜⎜⎛1𝑘[𝛿], …, 1𝑘[𝛿]⏟⏟⏟⏟⏟

𝑛

, 𝛿, 𝛿2, 𝛿3, …
⎠
⎟⎟⎞ ∈ 𝑘[𝛿]ℕ.

By Lemma 3.5.1, there is a countable fadelian subring 𝑅∞ of 𝑅 containing 𝑆. Using
elements of 𝑆, we replicate the proof of Theorem 3.4.1 in 𝑅∞: the sequence (𝑅∞𝑒𝑛)𝑛≥0
of left ideals of 𝑅∞ is strictly increasing, and similarly for the right ideals (𝑒𝑛𝑅∞)𝑛≥0.
We conclude that 𝑅∞ is a countable non-Noetherian fadelian ring. □

4. Formal Laurent series on fadelian rings
In this section, we study formal series over a domain 𝑅. We define them in the following
way:

Definition 4.1.  The ring 𝑅[[𝑋]] is the ring of formal power series with coefficients in 𝑅
where the indeterminate 𝑋 commutes with elements of 𝑅, i.e. multiplication is given by:

(∑
𝑛≥0

𝑎𝑛𝑋𝑛)(∑
𝑛≥0

𝑏𝑛𝑋𝑛) = ∑
𝑛≥0

(∑
𝑛

𝑖=0
𝑎𝑖𝑏𝑛−𝑖)𝑋𝑛.

If 𝑃 = ∑𝑛≥0 𝑎𝑛𝑋𝑛 is an element of 𝑅[[𝑋]], we denote by 𝑃(0) the element 𝑎0 ∈ 𝑅. We
also define Laurent series over 𝑅:

Definition 4.2.  The ring 𝑅((𝑋)) consists of elements which are either 0 or of the form
𝑋𝑗𝑃 , where 𝑗 ∈ ℤ, 𝑃 ∈ 𝑅[[𝑋]] and 𝑃(0) ≠ 0, equipped with the product (𝑋𝑗𝑃)(𝑋𝑘𝑄) =
𝑋𝑗+𝑘(𝑃𝑄).

This construction is related to fadelianity because it preserves it:

Theorem 4.3.  The domain 𝑅 is fadelian if and only if 𝑅((𝑋)) is fadelian.

Proof.

• First assume that 𝑅((𝑋)) is fadelian. Let 𝑥, 𝑎 ∈ 𝑅 ∖ {0}. There are 𝑋𝑗𝑃 , 𝑋𝑘𝑄 ∈
𝑅((𝑋)), with 𝑃(0), 𝑄(0) ≠ 0, such that:

𝑥 = 𝑋𝑗𝑃𝑎 + 𝑎𝑋𝑘𝑄.

By multiplying by some 𝑋𝑟, one may assume that 𝑟, 𝑗, 𝑘 are three nonnegative inte-
gers, one of them zero, such that:

𝑥𝑋𝑟 = 𝑋𝑗𝑃𝑎 + 𝑎𝑋𝑘𝑄.

If 𝑟 = 0, then 𝑥 = 𝑋𝑗𝑃𝑎 + 𝑎𝑋𝑘𝑄 in 𝑅[[𝑋]] and by evaluating at 0, we get 𝑥 ∈ 𝑅𝑎 +
𝑎𝑅. Otherwise, we have 𝑟 ≥ 1 and either 𝑗 or 𝑘 is zero. We assume for example that
𝑗 = 0. Then:

𝑥𝑋𝑟 = 𝑃𝑎 + 𝑎𝑋𝑘𝑄.
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Since 𝑟 ≥ 1, we know that (𝑥𝑋𝑟)(0) = 0. Moreover (𝑃𝑎)(0) = 𝑃(0)𝑎 is nonzero be-
cause 𝑅 is a domain. Hence (𝑎𝑋𝑘𝑄)(0) is also nonzero. This means that necessarily
𝑘 = 0. We have the equality:

𝑥𝑋𝑟 = 𝑃𝑎 + 𝑎𝑄.

By evaluating this equality at 0, we get: 0 = 𝑃(0)𝑎 + 𝑎𝑄(0). Hence:

𝑥𝑋𝑟 = (𝑃 − 𝑃(0))𝑎 + 𝑎(𝑄 − 𝑄(0)).

Both 𝑃 − 𝑃(0) and 𝑄 − 𝑄(0) cancel at 0. We can factor 𝑋 from the equality:

𝑥𝑋𝑟−1 = 𝑃1𝑎 + 𝑎𝑄1.

Iterate the process to reach:

𝑥 = 𝑃𝑟𝑎 + 𝑎𝑄𝑟.

Finally, evaluate at zero to obtain the desired equality in 𝑅:

𝑥 = 𝑃𝑟(0)𝑎 + 𝑎𝑄𝑟(0).

This proves that 𝑅 is fadelian.

• Now assume that 𝑅 is fadelian. Consider two nonzero elements of 𝑅((𝑋)) written as
𝑋𝑗𝑃 , 𝑋𝑘𝑄 with 𝑗, 𝑘 ∈ ℤ, 𝑃 , 𝑄 ∈ 𝑅[[𝑋]] and 𝑄(0) ≠ 0. Write 𝑃 = ∑𝑛≥0 𝑝𝑛𝑋𝑛 and
𝑄 = ∑𝑛≥0 𝑞𝑛𝑋𝑛. Then 𝑞0 is a nonzero element of 𝑅.

We are searching for sequences (𝑏0, 𝑏1, 𝑏2, …) and (𝑐0, 𝑐1, 𝑐2, …) of elements of 𝑅
such that:

∑
𝑛≥0

𝑝𝑛𝑋𝑛 = (∑
𝑛≥0

𝑞𝑛𝑋𝑛)(∑
𝑛≥0

𝑏𝑛𝑋𝑛) + (∑
𝑛≥0

𝑐𝑛𝑋𝑛)(∑
𝑛≥0

𝑞𝑛𝑋𝑛). (5)

If we find such sequences, then we have the equality in 𝑅((𝑋)):

𝑋𝑗𝑃 = (𝑋𝑘𝑄)(∑
𝑛≥0

𝑏𝑛𝑋𝑛+𝑗−𝑘) + (∑
𝑛≥0

𝑐𝑛𝑋𝑛+𝑗−𝑘)(𝑋𝑘𝑄)

which shows that 𝑅((𝑋)) is fadelian.
We prove the existence of (𝑏𝑛) and (𝑐𝑛) by induction:

‣ Looking at the constant coefficient in Equation 5, we get the equality:

𝑝0 = 𝑞0𝑏0 + 𝑐0𝑞0.

We can fix 𝑏0, 𝑐0 ∈ 𝑅 satisfying this equality, because 𝑅 is fadelian and 𝑞0 ≠ 0.

‣ Assume we have defined 𝑏0, …, 𝑏𝑛−1, 𝑐0, …, 𝑐𝑛−1 such that the coefficients in front
of 𝑋𝑖 are equal in both sides of Equation 5, for 𝑖 = 0, …, 𝑛 − 1. Now consider the
coefficient in front of 𝑋𝑛. We are trying to solve the equation:

𝑝𝑛 = ∑
𝑛

𝑖=0
𝑞𝑖𝑏𝑛−𝑖 + 𝑐𝑛−𝑖𝑞𝑖
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which can be rewritten as:

𝑝𝑛 − ∑
𝑛

𝑖=1
(𝑞𝑖𝑏𝑛−𝑖 + 𝑐𝑛−𝑖𝑞𝑖) = 𝑞0𝑏𝑛 + 𝑐𝑛𝑞0.

We can fix 𝑏𝑛, 𝑐𝑛 ∈ 𝑅 satisfying this equality, because 𝑅 is fadelian and 𝑞0 ≠ 0.

□

To construct a non-Ore fadelian ring (Corollary 4.5), the main ingredient is the following
theorem:

Theorem 4.4.  Assume 𝑅 is a countable fadelian ring which is not right (resp. left)
Noetherian. Then 𝑅((𝑋)) is a fadelian ring which is not right (resp. left) Ore.

A more general version holds (if 𝑅 is a non-Noetherian countable simple domain, then
𝑅((𝑋)) is not Ore) but we prove the weaker statement. Theorem 4.4 and Theorem 3.5.2
directly imply:

Corollary 4.5.  There exists a fadelian ring which is neither right nor left Ore.

Proof of Theorem 4.4.  We focus on right ideals, as the other case is dual. The ring
𝑅((𝑋)) is fadelian by Theorem 4.3. Since 𝑅 is countable and not right Noetherian, there
are:

• a bĳective enumeration (𝑎0, 𝑎1, 𝑎2, …) of all elements of 𝑅, with 𝑎0 = 0;
• a strictly increasing sequence 0 = 𝐼0 ⊊ 𝐼1 ⊊ 𝐼2 ⊊ … of right ideals of 𝑅.

Choose for every 𝑛 ≥ 0 an element 𝑏𝑛 ∈ 𝐼𝑛+1 ∖ 𝐼𝑛 and define the right ideal:

𝐼𝑛 = 𝑏0𝑅 + … + 𝑏𝑛𝑅 (⊆ 𝐼𝑛+1).

Let 𝑛 ≥ 1. We shall prove that there is a 𝑐𝑛 ∈ 𝑅 such that 𝑏𝑛𝑐𝑛𝑎𝑛 ∉ 𝐼𝑛−1. Assume by
contradiction that there is no such 𝑐𝑛. Then 𝑏𝑛𝑅𝑎𝑛 ⊆ 𝐼𝑛−1. Write 1 = 𝛾𝑛𝑎𝑛 + 𝑎𝑛𝛿𝑛 for
some 𝛾𝑛, 𝛿𝑛 ∈ 𝑅. Then:

𝑏𝑛 = 𝑏𝑛 · 1 = 𝑏𝑛(𝛾𝑛𝑎𝑛 + 𝑎𝑛𝛿𝑛) = 𝑏𝑛𝛾𝑛𝑎𝑛⏟
∈𝑏𝑛𝑅𝑎𝑛

+ 𝑏𝑛 · 1 · 𝑎𝑛⏟
∈𝑏𝑛𝑅𝑎𝑛

𝛿𝑛 ∈ 𝐼𝑛−1 ⊆ 𝐼𝑛.

This contradicts the choice of 𝑏𝑛 as an element of 𝐼𝑛+1 ∖ 𝐼𝑛. So we may choose a sequence
𝑐1, 𝑐2, … of elements of 𝑅 such that 𝑏𝑛𝑐𝑛𝑎𝑛 ∉ 𝐼𝑛−1. We also define 𝑐0 = 1.

Define the set 𝐽𝑛 = {𝑥 ∈ 𝑅 | 𝑏𝑛𝑐𝑛𝑥 ∈ 𝐼𝑛−1}. For 𝑛 ≥ 1, the set 𝐽𝑛 is a right ideal of
𝑅 which does not contain 𝑎𝑛. Since the elements (𝑎𝑛)𝑛≥1 form an exhaustive enumeration
of 𝑅 ∖ {0}, we have:

⋂
𝑛≥1

𝐽𝑛 = 0.

Now consider the two following nonzero elements of 𝑅((𝑋)):

𝐴 = ∑
𝑛≥0

𝑏𝑛𝑐𝑛𝑋𝑛 and 𝐵 = 𝐴 + 𝑏0.
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To prove that 𝑅((𝑋)) is not right Ore, it suffices to prove that 𝐴𝑇 = 𝐵𝑆 implies 𝑇 =
𝑆 = 0. Assume by contradiction that 𝐴𝑇 = 𝐵𝑆, where 𝑇  and 𝑆 are nonzero elements
which we write as:

𝑇 = ∑ 𝑘𝑛𝑋𝑛 and 𝑆 = ∑ 𝑙𝑛𝑋𝑛.

By multiplying by some power of 𝑋, we may assume that 𝑘𝑛 = 𝑙𝑛 = 0 for negative 𝑛 and
that either 𝑘0 ≠ 0 or 𝑙0 ≠ 0. Look at the constant coefficient in the equality 𝐴𝑇 = 𝐵𝑆 to
obtain:

𝑏0𝑘0 = 2𝑏0𝑙0.

Since 𝑅 is a domain and 𝑏0 ≠ 0, we have 𝑘0 = 2𝑙0. Now look at the coefficient in front of
𝑋𝑖 in the equality 𝐴𝑇 = 𝐵𝑆:

𝑏𝑖𝑐𝑖𝑘0 + ∑
𝑖−1

𝑗=0
𝑏𝑗𝑐𝑗𝑘𝑖−𝑗 = 𝑏𝑖𝑐𝑖𝑙0 + 𝑏0𝑙𝑖 + ∑

𝑖−1

𝑗=0
𝑏𝑗𝑐𝑗𝑙𝑖−𝑗.

Substitute 𝑘0 by 2𝑙0 in this equality and isolate the term 𝑏𝑖𝑐𝑖𝑙0 to obtain:

𝑏𝑖𝑐𝑖𝑙0 = 𝑏0𝑙𝑖 + ∑
𝑖−1

𝑗=0
𝑏𝑗𝑐𝑗(𝑙𝑖−𝑗 − 𝑘𝑖−𝑗).

Hence, 𝑏𝑖𝑐𝑖𝑙0 belongs to the ideal 𝐼𝑖−1. This means that 𝑙0 belongs to 𝐽𝑖, for all 𝑖 ≥ 1. As
we have shown, ⋂𝑖≥1 𝐽𝑖 = 0. This implies 𝑙0 = 𝑘0 = 0, which is a contradiction. □

Remark 4.6.  The constructions of this article use the axiom of choice, e.g. in order
to have a differentially closed field to apply Corollary 3.3.2 to, and in order to obtain
a non-principal ultrafilter in the proof of Theorem 3.4.1. However, Maxime Ramzi has
observed that Corollary 4.5 holds in ZF by the following argument: if 𝑉  is a model of
ZF and 𝐿 is its constructible universe, then 𝐿 is a model of ZFC and thus it proves that
the first-order theory of non-Ore fadelian rings has a model. That model, seen in 𝑉 , is
also a model of the same first-order theory (we omit the verifications). By completeness,
a choice-free proof of Corollary 4.5 exists.

Funnily, this argument does not work for Theorem 3.4.1, because the theory of non-
Noetherian rings is not first-order. But since Corollary 4.5 implies Theorem 3.4.1, it is
still true that Theorem 3.4.1 holds in ZF.

Another consequence of the argument is that the answer to the open question of
whether there is a non-fadelian weakly fadelian ring does not depend on the axiom of
choice.
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5. Formalizations of results from Section 2 in Lean 4.2
import Mathlib.Algebra.Ring.Basic
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic.NthRewrite
import Mathlib.Tactic.NoncommRing
import Mathlib.Tactic.Existsi

-- Lean 4.2 version (2023-11-27)
-- Thanks to the Lean Zulip for their help, especially to the following people:
Riccardo Brasca, Eric Wieser, Ruben Van de Velde, Patrick Massot

-- Fadelian, weakly fadelian rings
class Fadelian (R : Type*) [Ring R] [Nontrivial R]: Prop :=
  (prop : ∀(x:R), ∀(a:R), (a ≠ 0) → (∃(b:R), ∃(c:R), x = a*b + c*a))
class WeakFadelian (R : Type*) [Ring R] [Nontrivial R]: Prop :=
  (prop : ∀(a:R), (a ≠ 0) → (∃(b:R), ∃(c:R), 1 = a*b+c*a))

-- Fadelian rings are weakly fadelian
instance Fadelian.toWeakFadelian {R : Type*} [Ring R] [Nontrivial R] [Fadelian
R] : WeakFadelian R :=
  ⟨Fadelian.prop 1⟩

-- Left Ore rings
class LeftOre (R : Type*) [Ring R] [IsDomain R]: Prop :=
  (prop : ∀(x:R), ∀(y:R), (x≠0) → (y≠0) → ∃(a:R),∃(b:R),(a≠0) ∧ (b≠0) ∧ (a*x=b*y))

-- In a weakly fadelian ring, xy=yx=0 ⇒ x²=0 or y²=0
lemma lem_domain_1 {R :Type*} [Ring R] [Nontrivial R][WeakFadelian R] (x:R) (y:R)
(xy_zero : x*y=0) (yx_zero : y*x=0) : (x*x=0) ∨ (y*y=0) := by
  cases (em (x=0))
  case inl x_zero =>
    left
    rw [x_zero, mul_zero]
  case inr x_nonzero =>
    right
    obtain ⟨b,c,d⟩ := WeakFadelian.prop x x_nonzero
    nth_rewrite 1 [← mul_one y, d]
    simp [mul_add, ← mul_assoc, yx_zero]
    simp [mul_assoc, xy_zero]

-- In a weakly fadelian ring, x²=0 ⇒ x=0
lemma lem_domain_2 {R :Type*} [Ring R] [Nontrivial R] [WeakFadelian R] (x : R)
(xx_zero : x*x=0) : x=0 := by
  by_contra x_nonzero
  obtain ⟨b, c, d⟩ := WeakFadelian.prop x x_nonzero

  have cx_eq_cxcx : c*x=c*(x*c)*x := by
    rw [← mul_one (c*x), d, mul_add]
    simp [mul_assoc, xx_zero]
    simp [← mul_assoc, xx_zero]
  have xb_eq_xbxb : x*b=x*(b*x)*b := by
    rw [← one_mul (x*b), d, add_mul]
    simp [mul_assoc, xx_zero]
    simp [← mul_assoc, xx_zero]

  have xbxb_or_cxcx_zero : ((x*b)*(x*b)=0) ∨ ((c*x)*(c*x))=0 := by
    have cxxb_zero : (c*x)*(x*b) = 0 := by
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      simp [← mul_assoc, mul_assoc, xx_zero]
    have xbcx_zero : (x*b)*(c*x) = 0
      := by
      have xb_from_cx : x*b = 1 - c * x := by simp [d]
      have xb_cx_commute : (x*b)*(c*x) = (c*x)*(x*b) := by rw [xb_from_cx, sub_mul,
one_mul, mul_sub, mul_one]
      rw [xb_cx_commute]
      simp [mul_assoc, ← mul_assoc, xx_zero]
    exact lem_domain_1 (x*b) (c*x) xbcx_zero cxxb_zero

  have one_eq_zero : ((0:R)=(1:R)) := by
    cases xbxb_or_cxcx_zero
    case inl xbxb_zero =>
      have xb_zero : x*b=0 := by
        rw [xb_eq_xbxb, mul_assoc, mul_assoc, ← mul_assoc, xbxb_zero]
      rw [xb_zero, zero_add] at d
      have ccxx_one : (c*c)*(x*x) = 1 := by
        rw [← mul_assoc, mul_assoc c c x, ← d, mul_one, ← d]
      rw [xx_zero, mul_zero] at ccxx_one
      apply ccxx_one
    case inr cxcx_zero =>
      have cx_zero : c*x=0 := by
        rw [cx_eq_cxcx, mul_assoc, mul_assoc, ← mul_assoc, cxcx_zero]
      rw [cx_zero, add_zero] at d
      have xxbb_one : (x*x)*(b*b) = 1 := by
        rw [← mul_assoc, mul_assoc x x b, ← d, mul_one, ← d]
      rw [xx_zero, zero_mul] at xxbb_one
      apply xxbb_one

  have x_zero : (x=0) := by
    rw [← one_mul x, ← one_eq_zero, zero_mul]
  exact x_nonzero x_zero

-- Weakly fadelian rings are domains
instance WeakFadelian.to_isDomain {R :Type*} [Ring R] [Nontrivial R] [WeakFadelian
R] : IsDomain R := by
  have : NoZeroDivisors R :=
  ⟨fun {x y xy_zero} => by
    have yx_zero : y*x=0 := by
      apply lem_domain_2 (y*x)
      simp [mul_assoc, ←mul_assoc, xy_zero]
    cases (lem_domain_1 x y xy_zero yx_zero)
    case inl xx_zero =>
      left
      exact lem_domain_2 x xx_zero
    case inr yy_zero =>
      right
      exact lem_domain_2 y yy_zero
  ⟩
  apply NoZeroDivisors.to_isDomain

-- Weakly fadelian left Ore rings are fadelian
theorem left_ore_weak_fadelian_is_fadelian {R :Type*} [Ring R] [Nontrivial R]
[WeakFadelian R] [LeftOre R] : Fadelian R :=
  ⟨fun {x a a_nonzero} => by
    cases (em (x=0))
    case inl x_zero =>
      existsi (0:R), (0:R)
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      simp [x_zero]
    case inr x_nonzero =>
      obtain ⟨b, c, b_nonzero, _, bx_eq_ca⟩ :=
        LeftOre.prop x a x_nonzero a_nonzero
      have ab_nonzero : (a*b ≠ 0) := by
        simp [a_nonzero, b_nonzero]
      obtain ⟨k, l, abk_p_lab_eq_one⟩ :=
        WeakFadelian.prop (a*b) ab_nonzero
      existsi (b*k*x), (l*a*c)
      simp [mul_assoc, ←bx_eq_ca]
      simp [← mul_assoc, ← add_mul]
      simp [mul_assoc l a b, ← abk_p_lab_eq_one]
  ⟩
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