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Definition. Let n ≥ 1. A topological space X is said to be n-flimsy if removing fewer then n arbi-
trary points leaves the space connected and removing any n arbitrary (distinct) points disconnects
the space.

For example, R is 1-flimsy and S1 is 2-flimsy. In the following, we prove 3-flimsy spaces does not
exist.

Theorem 1. Let X be a 2-flimsy space and x, y ∈ X , with x 6= y.

If there is three open sets of X , U1, U2, and U3, such that (U1 ∪ U2 ∪ U3) ∩ {x, y}c = X\{x, y}
and U1 ∩ U2 ∩ {x, y}c = U1 ∩ U3 ∩ {x, y}c = U2 ∩ U2 ∩ {x, y}c = ∅, then there is i ∈ {1, 2, 3}
such that Ui ∩ {x, y}c = ∅
So, X\{x, y} has exactly two connected components.

Proof. We prove it by contradiction: let us suppose ∀i ∈ {1, 2, 3}, Ui ∩ {x, y}c 6= ∅. We choose
u1 ∈ U1 ∩ {x, y}c and u2 ∈ U2 ∩ {x, y}c. u1 /∈ U2 ∪ U3 and u2 /∈ U1 ∪ U3. We are going to
prove X\{u1, u2} is connected, which contradicts that X is 2-flimsy. Let U, V two open sets of X
such that (U ∪ V ) ∩ {u1, u2}c = X\{u1, u2} and U ∩ V ∩ {u1, u2}c = ∅. We can suppose x ∈ U
without loss of generality, and so x /∈ V

1. U ∪ U1 ∪ U2 and V ∩ U3 are open.

(U ∪ U1 ∪ U2) ∩ (V ∩ U3) ⊂ (U ∩ V ) ∪ (U1 ∩ U3) ∪ (U2 ∩ U3) ⊂ {u1, u2, x, y} but x /∈ V ,
and u1, u2 /∈ U3 so (U ∪ U1 ∪ U2) ∩ (V ∩ U3) ∩ {y}c = ∅
(U ∪ U1 ∪ U2) ∪ (V ∩ U3) ⊃ U1 ∪ U2 ∪ (U3 ∩ (U ∪ V )) ⊃ (U1 ∪ U2 ∪ U3) ∩ {u1, u2}c ⊃
X\{u1, u2, x, y} but x ∈ U , u1 ∈ U1, and u2 ∈ U2 so ((U ∪U1 ∪U2)∪ (V ∩U3))∩ {y}c =
X\{y}
X is 2-flimsy so X\{y} is connected. Moreover x ∈ (U ∪ U1 ∪ U2) ∩ {y}c 6= ∅.
So (V ∩ U3) ∩ {y}c = ∅
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2. If y ∈ V , then y /∈ U and the previous step implies (U∩U3)∩{x}c = ∅. Then U3∩{x, y}c ⊂
(U3 ∩ U ∩ {x}c) ∪ (U3 ∩ V ∩ {y}c) ∪ (U3 ∩ {u1, u2}) = ∅ which is false.

So y ∈ U , y /∈ V , V ∩ U3 = ∅, and U3 ⊂ U

3. U ∪ U1 and V ∩ U2 are open.

(U ∪ U1) ∩ (V ∩ U2) ⊂ (U ∩ V ) ∪ (U1 ∩ U2) ⊂ {x, y, u1, u2} but u1 /∈ U2 and x, y /∈ V so
(U ∪ U1) ∩ (V ∩ U2) ∩ {u2}c = ∅
(U∪U1)∪(V ∩U2) ⊃ U1∪U∪(U2∩(U∪V )) ⊃ (U1∪U3∪U2)∩{u1, u2}c ⊃ X\{u1, u2, x, y}
but x, y ∈ U , and u1 ∈ U1 so ((U ∪ U1) ∪ (V ∩ U2)) ∩ {u2}c = X\{u2}
X\{u2} is connected and x ∈ (U ∪ U1) ∩ {u2}c 6= ∅ so (V ∩ U2) ∩ {u2}c = ∅

4. With the same previous step, we have (V ∩ U1) ∩ {u1}c = ∅.
So V ∩ {u1, u2}c ⊂ (V ∩ U1 ∩ {u1}c) ∪ (V ∩ U2 ∩ {u2}c) ∪ (V ∩ (U3 ∪ {x, y})) = ∅. So,
X\{u1, u2} is connected.

Theorem 2. A n-flimsy space is infinite.

Proof. see https://math.stackexchange.com/questions/2939445/flimsy-spaces-removing-any-n-points-
results-in-disconnectedness for the proof of ’Babelfish’

Theorem 3. Let X a n-flimsy space. ∀x ∈ X , {x} is either open or closed.

Proof. We start with the case n = 1. X is connected but X\{x} is disconnected. It exists a
nontrivial clopen set Y ⊂ X\{x}, in particular Y 6= ∅ and Y ∪ {x} 6= X . Since Y is open in
X\{x}, Y or Y ∪ {x} is open in X .

• if Y is open in X , by connectedness, Y is not closed in X . Since Y in closed in X\{x},
Y ∪ {x} is closed in X . So, {x} = (Y ∪ {x}) ∩ (X\Y ) is closed.

• if Y ∪ {x} is open in X , then Y is closed in X , and {x} = (Y ∪ {x}) ∩ (X\Y ) is open.

By induction, we suppose the theorem to be true for n ≥ 1, and we observe X a (n + 1)-flimsy
space and x ∈ X . X is infinite, so there is y, z ∈ X , y 6= z, such that {x} is either open in X\{y}
and X\{z} or closed in X\{y} and X\{z}, because X\{y} and X\{z} are n-flimsy. We suppose
we are in the open case (the closed space can be examined in the same way).

If {x} is not open in X then {x, y} and {x, z} are open in X , so {x} = {x, y} ∩ {x, z} is open in
X .

Lemma 1. Let x, t, s ∈ X , three distinct points of a 2-flimsy space. We denote C1(t), C2(t) the two
connected components of X\{x, t} and C1(s), C2(s) the two connected components of X\{x, s}.
We suppose s ∈ C1(t) and t ∈ C1(s).

D = C1(t) ∩ C1(s) is one of the two connected components of X\{t, s}
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Proof. We begin by showing C1(t) ∪ {x} is connected by contradiction: we suppose it is discon-
nected.

C1(t) is open and closed in X\{x, t}, because it is one of the only two connected components.
Moreover, C1(t) ∪ {x} has also two connected components, C1(t) and {x}, so C1(t) is open and
closed in C1(t) ∪ {x} ⊂ X\{t}.
So C1(t) or C1(t)∪ {x} is open in X\{t}, but we know there is an open set U of X\{t} such that
C1(t) = U ∩ (C1(t) ∪ {x}), so in every case, C1(t) is open in X\{t}. The same shows C1(t) is
closed in X\{t}. C1(t) is not trivial so X\{t} is not connected: we have a contradiction.

Of course, Ci(r) ∪ {y} is connected, for i = 1 or 2, r = t or s, and y = x or r.

X\{t, s} = D ∪ (C2(t)∪ {x})∪ (C2(s)∪ {x}), and (C2(t)∪ {x})∪ (C2(s)∪ {x}) is connected.
We only need to show D is connected.

If D is not connected, there are U, V open sets of X such that U ∩ V ∩D = ∅, (U ∪ V )∩D = D,
and U ∩ D 6= ∅ and V ∩ D 6= ∅. Let u ∈ U ∩ D and v ∈ V ∩ D. X\{u, v} is not connected,
we have Ũ , Ṽ open sets of X such that Ũ ∩ Ṽ ∩ {u, v}c = ∅, (Ũ ∪ Ṽ ) ∩ {u, v}c = X\{u, v}, and
Ũ ∩ {u, v}c 6= ∅ and Ṽ ∩ {u, v}c 6= ∅.
By connectedness of (C2(t)∪{x})∪(C2(s)∪{x}) = Dc∩{u, v}c = Dc, we can suppose Dc ⊂ Ũ
and Ṽ ⊂ D

(V ∩ Ṽ ∩ {u, v}c)∪ (U ∩ Ṽ ∩ {u, v}c) = Ṽ ∩ {u, v}c ∩ (U ∪ V ) = Ṽ ∩ {u, v}c ∩D ∩ (U ∪ V ) =
Ṽ ∩ {u, v} ∩D = Ṽ ∩ {u, v}c 6= ∅ so we can suppose V ∩ Ṽ ∩ {u, v}c 6= ∅
U ∪ Ũ and V ∩ Ṽ are open.

(U ∪ Ũ) ∩ (V ∩ Ṽ ) ⊂ (U ∩ V ∩ Ṽ ) ∪ (Ũ ∩ Ṽ ) ⊂ (U ∩ V ∩D) ∪ {u, v} = {u, v} but u /∈ V , so
(U ∪ Ũ) ∩ (V ∩ Ṽ ) ∩ {v}c = ∅
(U ∪ Ũ) ∪ (V ∩ Ṽ ) ⊃ Ũ ∪ (Ṽ ∩ (U ∪ V )) ⊃ Ũ ∪ (Ṽ ∩D) = Ũ ∩ Ṽ ⊃ X\{u, v} but u ∈ U so
((U ∪ Ũ) ∪ (V ∩ Ṽ )) ∩ {v}c = X\{v}
Moreover, u ∈ (U ∪ Ũ) ∩ {v}c 6= ∅ and (V ∩ Ṽ ) ∩ {v}c ⊃ V ∩ Ṽ ∩ {u, v}c 6= ∅ so X\{v} is not
connected: contradiction.

We have proven D is connected.

Theorem 4. There are no 3-flimsy spaces.

Proof. Let X a 3-flimsy space and x, y, t, s some distinct points of X . X\{y} is 2-flimsy, so if
C1(t) is the connected component of X\{y, x, t} containing s and C1(s) is the connected com-
ponent of X\{y, x, s} containing t, then D = C1(t) ∩ C1(s) is one of the two connected compo-
nents of X\{y, t, s}. Moreover, D is also one of the two connected components of X\{x, t, s}.
x, y, t, s /∈ D

So, D is open and closed in X\{x, t, s} and in X\{y, t, s}. We have two open sets of X , Ux and
Uy, and two closed sets of X , Gx and Gy, such that
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Ux ∩ {x, t, s}c = Gx ∩ {x, t, s}c = D and Uy ∩ {y, t, s}c = Gy ∩ {y, t, s}c = D, so y /∈ Ux, Gx

and x /∈ Uy, Gy

Ux∩Uy∩{t, s}c = Ux∩{y, t, s}c∩Uy∩{x, t, s}c = D∩D = D and also, Gx∩Gy∩{t, s}c = D.
Since Ux ∩ Uy is open in X and Gx ∩ Gy is closed in X , D is open and closed in X\{t, s}.
Moreover, D is not trivial because it is a connected component of X\{x, t, s}. So X\{t, s} is not
connected and X is not 3-flimsy.
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