Flimsy Spaces

Robin Khanfir

October 21, 2018

Definition. Let $n \ge 1$. A topological space X is said to be n-flimsy if removing fewer then n arbitrary points leaves the space connected and removing any n arbitrary (distinct) points disconnects the space.

For example, \mathbb{R} is 1-flimsy and S^1 is 2-flimsy. In the following, we prove 3-flimsy spaces does not exist.

Theorem 1. Let X be a 2-flimsy space and $x, y \in X$, with $x \neq y$.

If there is three open sets of X, U_1 , U_2 , and U_3 , such that $(U_1 \cup U_2 \cup U_3) \cap \{x,y\}^c = X \setminus \{x,y\}$ and $U_1 \cap U_2 \cap \{x,y\}^c = U_1 \cap U_3 \cap \{x,y\}^c = U_2 \cap U_2 \cap \{x,y\}^c = \emptyset$, then there is $i \in \{1,2,3\}$ such that $U_i \cap \{x,y\}^c = \emptyset$

So, $X \setminus \{x, y\}$ has exactly two connected components.

Proof. We prove it by contradiction: let us suppose $\forall i \in \{1,2,3\},\ U_i \cap \{x,y\}^c \neq \emptyset$. We choose $u_1 \in U_1 \cap \{x,y\}^c$ and $u_2 \in U_2 \cap \{x,y\}^c$. $u_1 \notin U_2 \cup U_3$ and $u_2 \notin U_1 \cup U_3$. We are going to prove $X \setminus \{u_1,u_2\}$ is connected, which contradicts that X is 2-flimsy. Let U,V two open sets of X such that $(U \cup V) \cap \{u_1,u_2\}^c = X \setminus \{u_1,u_2\}$ and $U \cap V \cap \{u_1,u_2\}^c = \emptyset$. We can suppose $x \in U$ without loss of generality, and so $x \notin V$

1. $U \cup U_1 \cup U_2$ and $V \cap U_3$ are open.

 $(U\cup U_1\cup U_2)\cap (V\cap U_3)\subset (U\cap V)\cup (U_1\cap U_3)\cup (U_2\cap U_3)\subset \{u_1,u_2,x,y\} \text{ but } x\notin V, \text{ and } u_1,u_2\notin U_3 \text{ so } (U\cup U_1\cup U_2)\cap (V\cap U_3)\cap \{y\}^c=\emptyset$

$$(U\cup U_1\cup U_2)\cup (V\cap U_3)\supset U_1\cup U_2\cup (U_3\cap (U\cup V))\supset (U_1\cup U_2\cup U_3)\cap \{u_1,u_2\}^c\supset X\setminus\{u_1,u_2,x,y\} \text{ but } x\in U,u_1\in U_1\text{, and } u_2\in U_2\text{ so }((U\cup U_1\cup U_2)\cup (V\cap U_3))\cap \{y\}^c=X\setminus\{y\}$$

X is 2-flimsy so $X \setminus \{y\}$ is connected. Moreover $x \in (U \cup U_1 \cup U_2) \cap \{y\}^c \neq \emptyset$.

So
$$(V \cap U_3) \cap \{y\}^c = \emptyset$$

- 2. If $y \in V$, then $y \notin U$ and the previous step implies $(U \cap U_3) \cap \{x\}^c = \emptyset$. Then $U_3 \cap \{x, y\}^c \subset (U_3 \cap U \cap \{x\}^c) \cup (U_3 \cap V \cap \{y\}^c) \cup (U_3 \cap \{u_1, u_2\}) = \emptyset$ which is false. So $y \in U$, $y \notin V$, $V \cap U_3 = \emptyset$, and $U_3 \subset U$
- 3. $U \cup U_1$ and $V \cap U_2$ are open.

$$(U \cup U_1) \cap (V \cap U_2) \subset (U \cap V) \cup (U_1 \cap U_2) \subset \{x, y, u_1, u_2\} \text{ but } u_1 \notin U_2 \text{ and } x, y \notin V \text{ so } (U \cup U_1) \cap (V \cap U_2) \cap \{u_2\}^c = \emptyset$$

$$(U \cup U_1) \cup (V \cap U_2) \supset U_1 \cup U \cup (U_2 \cap (U \cup V)) \supset (U_1 \cup U_3 \cup U_2) \cap \{u_1, u_2\}^c \supset X \setminus \{u_1, u_2, x, y\}$$
 but $x, y \in U$, and $u_1 \in U_1$ so $((U \cup U_1) \cup (V \cap U_2)) \cap \{u_2\}^c = X \setminus \{u_2\}$
$$X \setminus \{u_2\} \text{ is connected and } x \in (U \cup U_1) \cap \{u_2\}^c \neq \emptyset \text{ so } (V \cap U_2) \cap \{u_2\}^c = \emptyset$$

4. With the same previous step, we have $(V \cap U_1) \cap \{u_1\}^c = \emptyset$. So $V \cap \{u_1, u_2\}^c \subset (V \cap U_1 \cap \{u_1\}^c) \cup (V \cap U_2 \cap \{u_2\}^c) \cup (V \cap (U_3 \cup \{x, y\})) = \emptyset$. So, $X \setminus \{u_1, u_2\}$ is connected.

Theorem 2. A n-flimsy space is infinite.

Proof. see https://math.stackexchange.com/questions/2939445/flimsy-spaces-removing-any-n-points-results-in-disconnectedness for the proof of 'Babelfish'

Theorem 3. Let X a n-flimsy space. $\forall x \in X$, $\{x\}$ is either open or closed.

Proof. We start with the case n=1. X is connected but $X\setminus\{x\}$ is disconnected. It exists a nontrivial clopen set $Y\subset X\setminus\{x\}$, in particular $Y\neq\emptyset$ and $Y\cup\{x\}\neq X$. Since Y is open in $X\setminus\{x\}$, Y or $Y\cup\{x\}$ is open in X.

- if Y is open in X, by connectedness, Y is not closed in X. Since Y in closed in $X \setminus \{x\}$, $Y \cup \{x\}$ is closed in X. So, $\{x\} = (Y \cup \{x\}) \cap (X \setminus Y)$ is closed.
- if $Y \cup \{x\}$ is open in X, then Y is closed in X, and $\{x\} = (Y \cup \{x\}) \cap (X \setminus Y)$ is open.

By induction, we suppose the theorem to be true for $n \ge 1$, and we observe X a (n+1)-flimsy space and $x \in X$. X is infinite, so there is $y, z \in X, y \ne z$, such that $\{x\}$ is either open in $X \setminus \{y\}$ and $X \setminus \{z\}$ or closed in $X \setminus \{y\}$ and $X \setminus \{z\}$, because $X \setminus \{y\}$ and $X \setminus \{z\}$ are n-flimsy. We suppose we are in the open case (the closed space can be examined in the same way).

If $\{x\}$ is not open in X then $\{x,y\}$ and $\{x,z\}$ are open in X, so $\{x\}=\{x,y\}\cap\{x,z\}$ is open in X.

Lemma 1. Let $x, t, s \in X$, three distinct points of a 2-flimsy space. We denote $C_1(t), C_2(t)$ the two connected components of $X \setminus \{x, t\}$ and $C_1(s), C_2(s)$ the two connected components of $X \setminus \{x, s\}$. We suppose $s \in C_1(t)$ and $t \in C_1(s)$.

 $D = C_1(t) \cap C_1(s)$ is one of the two connected components of $X \setminus \{t, s\}$

Proof. We begin by showing $C_1(t) \cup \{x\}$ is connected by contradiction: we suppose it is disconnected.

 $C_1(t)$ is open and closed in $X\setminus\{x,t\}$, because it is one of the only two connected components. Moreover, $C_1(t)\cup\{x\}$ has also two connected components, $C_1(t)$ and $\{x\}$, so $C_1(t)$ is open and closed in $C_1(t)\cup\{x\}\subset X\setminus\{t\}$.

So $C_1(t)$ or $C_1(t) \cup \{x\}$ is open in $X \setminus \{t\}$, but we know there is an open set U of $X \setminus \{t\}$ such that $C_1(t) = U \cap (C_1(t) \cup \{x\})$, so in every case, $C_1(t)$ is open in $X \setminus \{t\}$. The same shows $C_1(t)$ is closed in $X \setminus \{t\}$. $C_1(t)$ is not trivial so $X \setminus \{t\}$ is not connected: we have a contradiction.

Of course, $C_i(r) \cup \{y\}$ is connected, for i = 1 or 2, r = t or s, and y = x or r.

 $X\setminus\{t,s\}=D\cup(C_2(t)\cup\{x\})\cup(C_2(s)\cup\{x\})$, and $(C_2(t)\cup\{x\})\cup(C_2(s)\cup\{x\})$ is connected. We only need to show D is connected.

If D is not connected, there are U,V open sets of X such that $U\cap V\cap D=\emptyset$, $(U\cup V)\cap D=D$, and $U\cap D\neq\emptyset$ and $V\cap D\neq\emptyset$. Let $u\in U\cap D$ and $v\in V\cap D$. $X\setminus\{u,v\}$ is not connected, we have \tilde{U},\tilde{V} open sets of X such that $\tilde{U}\cap \tilde{V}\cap\{u,v\}^c=\emptyset$, $(\tilde{U}\cup \tilde{V})\cap\{u,v\}^c=X\setminus\{u,v\}$, and $\tilde{U}\cap\{u,v\}^c\neq\emptyset$ and $\tilde{V}\cap\{u,v\}^c\neq\emptyset$.

By connectedness of $(C_2(t) \cup \{x\}) \cup (C_2(s) \cup \{x\}) = D^c \cap \{u, v\}^c = D^c$, we can suppose $D^c \subset \tilde{U}$ and $\tilde{V} \subset D$

 $(V\cap \tilde{V}\cap \{u,v\}^c)\cup (U\cap \tilde{V}\cap \{u,v\}^c)=\tilde{V}\cap \{u,v\}^c\cap (U\cup V)=\tilde{V}\cap \{u,v\}^c\cap D\cap (U\cup V)=\tilde{V}\cap \{u,v\}\cap D=\tilde{V}\cap \{u,v\}^c\neq \emptyset \text{ so we can suppose } V\cap \tilde{V}\cap \{u,v\}^c\neq \emptyset$

 $U \cup \tilde{U}$ and $V \cap \tilde{V}$ are open.

 $(U \cup \tilde{U}) \cap (V \cap \tilde{V}) \subset (U \cap V \cap \tilde{V}) \cup (\tilde{U} \cap \tilde{V}) \subset (U \cap V \cap D) \cup \{u,v\} = \{u,v\} \text{ but } u \not\in V, \text{ so } (U \cup \tilde{U}) \cap (V \cap \tilde{V}) \cap \{v\}^c = \emptyset$

 $(U \cup \tilde{U}) \cup (V \cap \tilde{V}) \supset \tilde{U} \cup (\tilde{V} \cap (U \cup V)) \supset \tilde{U} \cup (\tilde{V} \cap D) = \tilde{U} \cap \tilde{V} \supset X \backslash \{u,v\} \text{ but } u \in U \text{ so } ((U \cup \tilde{U}) \cup (V \cap \tilde{V})) \cap \{v\}^c = X \backslash \{v\}$

Moreover, $u \in (U \cup \tilde{U}) \cap \{v\}^c \neq \emptyset$ and $(V \cap \tilde{V}) \cap \{v\}^c \supset V \cap \tilde{V} \cap \{u,v\}^c \neq \emptyset$ so $X \setminus \{v\}$ is not connected: contradiction.

We have proven D is connected.

Theorem 4. There are no 3-flimsy spaces.

Proof. Let X a 3-flimsy space and x, y, t, s some distinct points of X. $X \setminus \{y\}$ is 2-flimsy, so if $C_1(t)$ is the connected component of $X \setminus \{y, x, t\}$ containing s and $C_1(s)$ is the connected component of $X \setminus \{y, x, s\}$ containing t, then $D = C_1(t) \cap C_1(s)$ is one of the two connected components of $X \setminus \{y, t, s\}$. Moreover, D is also one of the two connected components of $X \setminus \{x, t, s\}$. $x, y, t, s \notin D$

So, D is open and closed in $X \setminus \{x, t, s\}$ and in $X \setminus \{y, t, s\}$. We have two open sets of X, U_x and U_y , and two closed sets of X, G_x and G_y , such that

3

 $U_x\cap\{x,t,s\}^c=G_x\cap\{x,t,s\}^c=D$ and $U_y\cap\{y,t,s\}^c=G_y\cap\{y,t,s\}^c=D$, so $y\notin U_x,G_x$ and $x\notin U_y,G_y$

 $U_x \cap U_y \cap \{t,s\}^c = U_x \cap \{y,t,s\}^c \cap U_y \cap \{x,t,s\}^c = D \cap D = D$ and also, $G_x \cap G_y \cap \{t,s\}^c = D$. Since $U_x \cap U_y$ is open in X and $G_x \cap G_y$ is closed in X, D is open and closed in $X \setminus \{t,s\}$. Moreover, D is not trivial because it is a connected component of $X \setminus \{x,t,s\}$. So $X \setminus \{t,s\}$ is not connected and X is not 3-flimsy.