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Definition. Let n > 1. A connected topological space X is said to be n-flimsy if removing fewer
then n arbitrary points leaves the space connected and removing any n arbitrary (distinct) points
disconnects the space. X has to have more than n points.

For example, R is 1-flimsy and S* is 2-flimsy. In the following, we prove 3-flimsy spaces do not
exist.

Theorem 1. Let X a 2-flimsy space and x,y € X, with x # y. X\{x,y} has exactly two
connected components.

Proof. Tt is equivalent to show that X'\ {z, y} can not be covered by three disjoint non-empty open
sets. Let be three open sets of X, Uy, Uy, and Us, such that (U, UU,UU3)N{z,y}¢ = X \{x,y} and
UiNU;N{z, y}e = UiNUsN{z, y}¢ = UsNUsN{x, y}¢ = (). We are going to show by contradiction
that there is i € {1, 2, 3} such that U;N{z, y}* = 0: letus suppose Vi € {1,2,3}, U;N{x,y}* # 0.
We choose uy € Uy N{z,y}¢and us € Us N {x,y}° souy; ¢ Uy UU;s and ug ¢ Uy U Us. We are
going to prove X \{u;, us} is connected, which contradicts that X is 2-flimsy.

Let U, V two open sets of X such that (UUV )N{uy, us}¢ = X \{u1,uz} and UNV N {uy, ug}c = 0.
We can suppose x € U without loss of generality, and so = ¢ V.

1. UUU; UUy and V N Us are open.

ub,ul)N(VNUs) Cc(UNV)U U NUs)J(UsNUs) C {ug,ug,x,y}butx ¢ V,
and uy,ug € Usso (UU U, UU)N(VNU)N{y}c=0

(UUU,UlU)U(VNU;) DU UU,UUsN(UUV)) D (U UU, UU3) NA{ug, us}® D
X\{ur,ug,z,ytbutx € U,u; € Up,andug € Uy so (UU UL UU) U (VNU;3))N{y}e =
X\{y}

X is 2-flimsy so X\{y} is connected. Moreover z € (U U U; U Uy) N {y}¢ # 0.

So(VNUs)N{yl=0



2. Ify € V, theny ¢ U and the previous step implies (UNUs)N{z}¢ = (). Then UsN{z,y}° C
(UsnUN{z}) U (UsnNV N {y}) U (UsN{ug,us}) = 0 which is false.

SoyeU,y¢V,VNUs=0,and U3 C U

3. UUU; and V N U, are open.

(UUUl)ﬂ(VﬂUg) C (UﬂV)U(UlﬂUQ) C {x,y,ul,u2}butu1 ¢ UQ andx,ygé V so
UuU)N(VNU)N{u}e =0

(UUU1>U(VQU2) D) U1UUU(UQQ(UUV)) D) (U1UU3UU2>Q{U1,U2}C D X\{Ul,UQ,.T},y}
butz,y € U,and uy; € Uy so (UUU;) U (VNU)) N{ug}® = X\{uz}

X\{uz} is connected and = € (U U Uy) N{uz} # Dso (VNUz) N{ug} =10

4. With the same previous step, we have (V N Up) N {uq}¢ = 0.

So Vn{uy,ux}c € (VNU N{u }9) U (VNUNA{uz}) U (VN (UsU{x,y})) = 0. So,
X\{u1,us} is connected.

Theorem 2. A n-flimsy space is infinite.

Proof. see https://math.stackexchange.com/questions/2939445/flimsy-spaces-removing-any-n-points-
results-in-disconnectedness for the proof of *Babelfish’ [

Theorem 3. Let X a n-flimsy space. Yz € X, {x} is either open or closed.

Proof. We start with the case n = 1. X is connected but X\{z} is disconnected. It exists a
nontrivial clopen set Y C X\{x}, in particular Y # () and Y U {z} # X. Since Y is open in
X\{z},Y orY U{z}isopenin X.

e if Y is open in X, by connectedness, Y is not closed in X. Since Y in closed in X\{z},
Y U{z}isclosedin X. So, {z} = (Y U{z}) N (X\Y) is closed.

e if Y U{z}isopenin X, then Y is closed in X, and {z} = (Y U {z}) N (X\Y) is open.

By induction, we suppose the theorem to be true for n > 1, and we observe X a (n + 1)-flimsy
space and x € X. X is infinite, so there is y, z € X, y # z, such that {z} is either open in X\{y}
and X \{z} orclosed in X\ {y} and X\{z}, because X \{y} and X\{z} are n-flimsy. We suppose
we are in the open case (the closed case can be examined in the same way).

If {«} is not open in X then {z,y} and {x, z} are open in X, so {x} = {z,y} N {x, 2} is open in
X.

]

Lemma 1. Let v,y € X, two distinct points of a 2-flimsy space, and C' one of the two connected
components of X\{x,y}. CU{x} and C U {y} are connected.



Proof. By contradiction, we suppose C' U {z} is disconnected.

C'and {z} are connected, so they are the only connected components of C'U{x}, so C'is open and
closed in C' U {z} C X\{y}. There is an open set U of X \{y} such that C = U N (C U {x})

Moreover, C is open and closed in X\{x, y}, because it is one of its only two connected compo-
nents, so C' or C'U {x} is open in X \{y}. But we know C' = U N (C' U {z}), so in every case,
C is open in X\{y}. The same shows C' is closed in X\{y}. C is not trivial so X\{y} is not
connected: we have a contradiction. [

Let X a 2-flimsy space and x,y, z three distinct points of X. We denote C'({x,y},z €) the
connected component of X \{z,y} which contains z, and C'({z,y}, z ¢) the other one. We also
denote C'({z,z},z €) = X\{z} and C({z,z},z ¢) = (.

Some relations and basic properties:

C{z,y},z2€)UC{a,y} 2 ¢) = X\{z,y} and C({z,y}, 2 €) NC({z, 5}, 2 ¢) = 0.

If a # z,y,thena € C({z,y}, 2 €) & C{z,y},z €) = C{x,y},a €) anda € C({x,y}, 2 ¢
) A O({xvy}7z g) = C({:p,y},a 6)

Theorem 4. If A is a connected subset of X, a 2-flimsy space, then A€ is also connected.

Proof. 1f A is trivial, the result is obvious. We can choose some a € A and 1) € A°. We begin to
prove the following equality.

A= C(a.v}.ae)

¢ A

Letz ¢ A, A C X\{z,v},anda € ANC{z,v},a €) # 0,s0 A C C({z,v},a €) by
connectedness. Moreover, x ¢ C({z,¥},a €), then = ¢ ﬂ C({y,v},a €). We obtain a new

. . y¢A
equality, with the complements.

A= ¢z, 9}, a ¢) U{a, v}

TrEAC

Thanks to the previous lemma, we know the C'({z,¢},a ¢) U {x, 1} are connected, and they all
contain ), so their union is also connected. O]

Lemma 2. Let z,t, s € X, three distinct points of a 2-flimsy space.
C({t, stz ¢) =C({x,t}, s e)NC({z, s}t €)
C({t, stz €) =C({x,t},s ) UC({a, s}t ¢) U {a}
Proof. First we can remark that
X\{t,s} =[C({z.t},s )N C({w,s},t €)]U[C{z,t},s ¢) UC{z, s}t ¢) U{x}]
0 =[C{z t}, s €)NC{x, s}t €)]N[CH{z, t}, s ¢)UC({x, s}t &)U {z}]



so we only need to show these two sets are connected.

By the lemma 1, C'({z,t},s ¢) U {z} and C({z, s},t ¢) U {x} are connected, so

C{z,t},s ¢) UC({x,s},t ¢)U{x} is connected as their union.

C({z,t},s €) N C({z,s},t €)]° = C({z,t},s ¢) UC{z,s},t ¢) U {x,t,s} is connected,

because C'({z,t},s ¢) U {x,t} and C'({z,s},t ¢) U {x, s} are connected. The complement of a
connected set is connected, which concludes the proof. O]

Theorem S. There are no 3-flimsy spaces.

Proof. Let X a 3-flimsy space and x,y,t, s some distinct points of X. X\{y} is 2-flimsy, so if
() is the connected component of X \{y, =, ¢} containing s and C; is the connected component of
X\{y, z, s} containing ¢, then D = C,NC} is one of the two connected components of X \{y, ¢, s}.
Moreover, D is also one of the two connected components of X\{z,¢, s}, by using the lemma 2
in X\{z}. z,y,t,s ¢ D

So, D is open and closed in X \{z,t, s} and in X\{y,?, s}. We have two open sets of X, U, and
Uy, and two closed sets of X, GG, and G, such that

Uy N {x,t, 5} = G, N{z,t,s}°=Dand U, N{y,t,s}° =G, N{y,t,s}°=D,soy ¢ U,,G,
andz ¢ Uy, G,

U.NU,N{t, s} =U,N{y,t, s}NnU,N{x,t,s}°=DND = D and also, G, NG, N{t,s}° = D.
Since U, N U, is open in X and G, N G, is closed in X, D is open and closed in X\{t, s}.

Moreover, D is not trivial because it is a connected component of X \{z, ¢, s}. So X\{¢, s} is not
connected and X is not 3-flimsy.

[
Lemma 3. If s, t,u,v € X are distinct such that v € C({s,t},u ¢), then s € C({u,v},t ¢).
Proof.
CHu,v}t ¢)=C{u,t},ve)NC{v,t}u€)

vel{sthud¢)=C{u,s}t,te)NnC{u,t},s€) C C({u,t}, s €)
So C({u,t},v €)=C{u,t},s €)and s € C({u,t},v €).
Moreover, v € C({s,t},u ¢) is the same thing as u € C({s,t},v ¢).

ue C{s,t})v¢)=C{v,s},te)nC{v,t},s€) C C({v,t},s €)
SoC({v,t},ue€)=C{v,t},s €)and s € C({v,t},u €).
Finally, s € C({u,t},v €) NC({v,t},u €) = C({u,v},t &). O

Theorem 6. If X is a 2-flimsy space, then X is a Hausdorff space.

Proof. Let x # y two points of X. We choose some a € X distinct of z and y, and we take some
b € C({x,y},a ¢). Then, we choose b € C({r,a},b ¢) and a € C({y,b},a ¢). Obviously,
x,y,a,b,a,b are distinct. We are going to show that C'({b,b},z €) N C({a,a},y €) = 0.

4



Because b € C({x,a},b ¢), by using the lemma, we have a € C({b,b},z ¢) and so
€ C({b,b},x €) = C({b,bha ¢)  C({a,b},b €).

This implies C'({a,b},b €) = C({a,b},z €) and C({b,b},z €) C C({a,b},z €).
With the same method, we have C'({a,a},y €) C C({a,b},y €). Butsince b € C({z,y},a &),

by using the lemma, we have y € C({a,b},z ¢), so C({a,b},y €) = C({a,b},z ¢) and we
conclude

C({b,b},z €)NnC{a,a},y €) € C({a,b},z €)NC({a,b},z ¢) =0

C({b, é},x €) is open in X\{b,b}, so there is an open set U of X such that U N {b,b}* =
C({b,b},z €). We have also V' an open set such that V' N {a,a}* = C'({a,a},y €). In particular,
reUandy e V.

UNV c (C({b,b},z €)U{bb})n(C{a,a},y €)U{a,a})

We need to show a,a ¢ C({b,b},z €), (b;b ¢ C({a,a},y €) will follow by symmetry), to
conclude U NV = (). However, we have already shown a € C({b,b},r ¢). Also recall that
C({b,b},z €) C C({a,b},z €).

aeC({yb}t,a¢)c C({ab}ye€)=C{a b}z ¢)
So, i ¢ C({a,b},z €)anda ¢ C({b,b},z €). O

Theorem 7. Let X a 2-flimsy space, x,y € X, and C a connected component of X\{z,y}. Then,
C is open in X and C U {z,y} is closed in X. Moreover, if x # y, then C' is the interior of
CU{x,y}, and C U {x,y} is the closure of C.

The connected components of X without any two points form a base of a coarser topology on X.
With this topology, X is still a 2-flimsy space and the connected components of X without any two
points remain the same.

Proof. If x =y, C'= X \{x} is open because X is Hausdorff.

If x # y, C'is closed in X'\ {x, y}, and since {z, y} is closed in X (Hausdorff), CU{x,y} is closed
in X. By the connectedness of X, X\{z}, and X\{y}, C U{z,y}, C U{y}, and C U {z} are
not open in X. However, C is open in X \{z,y}, so C is open in X. The connectedness implies
C'U{y} and C U {x} are not closed in X, and the identities on the closure and the interior follow.

It is easy to verify that the intersection of two sets of the form C'({x, y},t €) is either empty, either
of the form C'({x,y},t €), either an union of two sets of the form C'({z,y},t €). In the topology
generated by the C({z,y},t €), all the C'({z,y},t €) are open and all the C({z,y},t €) U{z,y}
are closed. So for any = # y, X \{z, y} is not connected.

]



1 Omega flimsy

1.1 Small results

In all this section, X is an omega-flimsy topological space.

If T is a countable infinite subset of X, then X'\ T is not connected. Thus, there are two open sets
Uand V of X, suchthat UNV C T, (UUV) C T, UNT" # 0,and VNT" # (). But, it
implies that (U N'V) U (U U V)¢ is countable while X \[(UNV) U (U U V)] is disconnected. So,
(UNV)U (U UV)is infinite. Finally, by observing (U N'V') is open and (U U V)¢ is closed, we
conclude

Lemma 4. [f T is a countable infinite subset of X, then there is an infinite S C T which is open
or closed.

Lemma 5. Except for a finite number of points, for all x € X, {x} is either open or closed.

Proof. Let us think by contradiction, and let us suppose 7' = {z,,, n € N} is infinite countable
subset of X such that Vn € N, {z,} is nor open nor closed. Either, each infinite subset of T
contains a closed infinite subset, either 7" has a subset 7” which does not contain any closed infinite
subset. So, each infinite subset of 7" contains an open infinite subset. Without loss of generality,
we can suppose each infinite subset of 7" contains a closed infinite subset (the case with open is
similar). We define 7;, = {w,:, k > 1} where p,, is the n-th prime number. There are disjoint
subsets of 7'

For all n > 1, there is .S,, C T}, a closed infinite subset. We can construct a strictly increasing
sequence (ay,),>1 of indexes, such that z,, € S, forall n > 1. But there is S C {z,,, n > 1},
which is closed and infinite. For an infinity of n, SNS,, = {x,} is closed, which is a contradiction.

]

The same argument can be adapted to show the following result.

Lemma 6. Let T be a countable infinite subset of X such thatVx € T, {x} is closed. There is an
infinite closed set S C T with empty interior.

If 7" does not contain any infinite closed subset, then each infinite subset of 7' contains an open
infinite subset, and there is « € T such that {z} is open, which contradicts the connectedness of
X. If S is an infinite closed subset of 7', then S\S = 08§ satisfies all the desired properties. In
particular, it is infinite because X is omega-flimsy.

PISTES POUR LES KAPPA, MAIS INUTILEs POUR LES OMEGA

If S C T and if A is a clopen set of X\S. B = AN T¢is a clopen set of X\7T such that
B C A C BUT. Now, we place ourselves in X. There is an open set U and a closed set F' such
that UNS® = FNS° =AandUNT = FNT*=B.ButB=UNTisalsoopen. BNF*CT
and since BN F* is open, BN F*° = (), or in other words B C F', because 1" has an empty interior.

In the same way, U C B.So, BCUCBCBCFC BUTand B\B C S.



Conversely, if B is a clopen set of X \7 such that F\E C S,then A = BN S° = B NS¢is a
clopen set of X\ S suchthat BC AC BUT.

Moreover, if B = (), then U C T, and since U is open, U = () = A. In the same way, if B = X\T
then A = X\ S. So, B is trivial if and only if A is trivial.

Proposition 1. If T is a countable infinite closed set with empty interior, then

e for any B clopen set of X\T, there is A a clopen set of X\S such that B C A C BUT if
and only if B\B C S.

e X\S is disconnected if and only if there is B a non-trivial clopen set of X\T such that
B\B C S.
We denote S(B) = F\E

Definition. Let 7" be a countable infinite set. A subset A of P(7’) is said to be mirific in 7" when:

e forall A € A, A is infinite.

e for all infinite S C 7', thereis A € Asuchthat A C T

If T is a countable infinite closed set with empty interior, then {S(B), B non-trivial clopen set of
X\T?} is mirific in 7.

Lemma 7. A mirific set can not be countable.

Proof. A ={A,, n > 1} mirific in N. Choose in each A, a x,, distinct of the previous and such
that z,, > 2" to find a contradiction O]

1.2 The connected subsets

The property of being omega-flimsy implies much more disconnectedness than it appears at first.
We place ourselves in X, an omega-flimsy space.

Theorem 8. The connected subsets of an omega-flimsy space are either finite or cofinite.

Definition. A subset 7' of X is said to be alike either if 7" is closed and T' = () or if Vo € T, {z}
is open.

By connectedness of X, if T is alike and open (resp. closed), than its only closed (resp. open)
subset is (). We have already proven that if 7" is infinite, it has an infinite alike subset.

Lemma 8. If T' is a countable infinite alike subset of X, then X\T has an infinity of connected
components.



Proof. We assume that 7' is closed (interchanging the words ’closed’ and ’open’ gives the case
where 7' is open).

We begin by observing that if A is a non-trivial clopen subset of X'\ T then
Fa={S CT, 3B clopen of X\S suchthat BNT" = A}

is a filter on 7. The facts that T € F4 and (R C Sand R € F4 = S € F,) are obvious.
Moreover, () ¢ F4 because X is connected. Let S, Sy € F4 and let us prove that S; N Sy € Fy4.
We have Uy, U; some open sets in X and F7, F5 some closed sets in X such that U; NS = F1 N ST,
Uy,NS§=F,NSs,and Fy NT¢ = F,NT°® = A. The set (U; U Uy) N (Fy N Fy)° is open and
included in 7', so it is empty.

(FL N F)\(U1 UT) = (F\UL) N (Fo\U2) € 81N S,

SO, (Fl ﬂFQ) N (Sl ﬂSQ)C = (Ul U UQ) N (Sl mSQ)C and (Fl mFg) NTe = A, and Sl ﬂSQ S fA.

Now, by contradiction, we suppose that X\7" has an finite number of connected components.
Then, it also has a finite number of non-trivial clopen subsets (more precisely, if it has n connected
components than it has 2" — 2 non-trivial clopen subsets). By considering a sequence of disjoint
infinite subsets of 7', one of them is not in any of the filters associated to those clopen subsets of
X\T. Indeed, if it was not the case, one of the filters would contain two disjoint subsets and so
would contain () which is impossible. We choose S such subset of T'. If B is a clopen subset of
X\S, then B N T¢ is a clopen subset of X'\7 but is not a non-trivial clopen subset of X\7T’, so
BNT = ()orT¢. Without loss of generality (may by taking (X\S)\B), we can assume that
B C T. Since B is open in X'\S, there is an open subset U such that U N S® = B,soU C T
and U = (), thus B = (). The set X\ S is connected which is a contradiction with the fact that X is
omega-flimsy. [

The following lemma is a general result which is not too difficult to prove.

Lemma 9. Let Y be a topological space with an infinity of connected components and let C be a
connected subset of Y. There exists a sequence (A,,)n>o of disjoint non-empty clopen subsets, all
disjoint from C.

Proof. pRoOf Is LeFt FoR tHe ReAdEr 0

Now, we can begin to look at the connected subsets of X.

Proposition 2. If C' a connected subset and if 'T' is a countable infinite alike subset disjoint from
C, then C' U T is not connected. Typically, if C' is a connected subset then C\C' is finite.

Proof. Let us suppose by contradiction that C' U 7" is connected. There exists a sequence (A;,),>0
of disjoint non-empty clopen sets of X'\7, all disjoint from C' (because C' is connected and T is
alike).

First case: We suppose for all n > 0, there exists a,, € A, such that {a,,} is not open in X. In this
case, we set S = {a,, n > 0}.



Let P and @ two open sets of X such that PNQ C Sand X\S C PUQ. Then, PNQN(CUT) =0
and (PUQ)N(CUT) = CUT because S is disjoint from C' U T. Since C' U T is connected,
we can assume without loss of generality that C UT C P and (CUT) N Q = (). We are going to
show that () = () which will contradict the disconnectedness of X'\ S.

For all n > 0, we have U,, an open set and F;, a closed set such that U, N T¢ = F,, N T¢ = A,. Let
us compare U,, N Q) and F,, N P¢ which are respectively open and closed.
(U, NQ)A(F, N P°) C [(U,AF,) N (QU P)U[(QAP)N (U, U F,)]
CTN(QUPHUISN (A, UT)]
CSNA,
C {an}
Because X\{a,} is connected and T'NU,, N Q = 0, it implies that U,, N Q) C {a, }. Moreover, we

know that {a,,} is not open, so U, N Q = (. In particular, a,, ¢ @ (because a,, € A, C U,), so
QNS=0and PNQ = 0.

To conclude, we see that P U U U,, and () constitute an open partition of X, and so () is trivial.

n>0
Indeed, we have already (P U U Un> N =(PNQ)U U U,NQ =10. Plus, S C U U,, so
n>0 n>0 n>0

<PU UUn) uQ = X.
n>0

Second case: We assume Vn > 0,Va, € A,, {a,} is open in X. We choose for each n > 0

some a, € A, and we set S = {a,, n > 0}. S is an open and alike subset of X. We remark

{a,} is also closed in X'\T because {a,} = A,\ U {a}. The connected set {a,,} is included in

aEAn
aFanp

{a,} U T and is not disjoint from 7, otherwise {a, } would be a clopen set of X. We deduce that
cuTU{a,} =CUTU{a,} is connected, and sois C UT U S.

Now, if B is a closed set of X \\S which contains only singletons that are open in X, then B is open
in X as an union of open singletons. However, since S is open in X, B is also closed in X. By
connectedness of X, B = (). Finally, with C U T and S, we are under the assumptions of the first
case. 0

Corollary 1. Vz € X, {x} is not open. Except for a finite number of points, for all x € X, {x} is
closed.
Proof. If {z} is open, then {x} is infinite because X is omega-flimsy, but can not be infinite

because {x} is connected. O

Proposition 3. If C is an infinite and co-infinite connected subset of X, then X \C has an infinity
of connected components.

n
Proof. By contradiction, we write X = |_| C; where n € N, the C; are connected, and C = (. It
i=1



1s not difficult to see .
C\C cJa\C.
i=1

Hence, the set IC' = 6\0 is finite and C' is a clopen subset of X \OC' which is connected. So,
C =0orC = X\0C. In the first case, C C JC is finite. In the second case, C D X\9C' is
cofinite. ]

We are finally able to prove the theorem.

Proof. Let C' be an infinite and co-infinite connected subset of X. According to the previous
proposition, there exists a sequence (A, ),>o of disjoint non-empty clopen sets in X \C. For all
n > 0, we choose a,, € A,, and we automatically know such that {a, } is not open in X (we even
can ask closed in X). We set S = {a,, n > 0}. The following of the proof is similar to the first
case of the first proposition.

Let P and () two open sets of X such that PN Q C S and X\S C PUQ. Then, PNQNC =0
and (PUQ)NC = C because S is disjoint from C'. Since C' is connected, we can assume without
loss of generality that C' C P and C N Q = (). We are going to show that @ C S which will
contradict the disconnectedness of X'\ S.

For all n > 0, we have U,, an open set and F}, a closed set such that U,, N C° = F,,NC° = A,. Let
us compare U,, N ) and F,, N P° which are respectively open and closed.
(U, NQ)A(F, N P°) C [(U,AF,) N (QU P)U[(QAP)N (U, U F,)]
ClCN(QUPHUISN(A,UC)]
CcCSNA,
C {an}

Because X \{a,} is connected and C' N U,, N Q = 0, it implies that U, N Q) C {a,}. Moreover,
we know that {a,, } is not open, so U,, N Q = (). In particular, a,, ¢ @ (because a,, € A,, C U,), so
QNS=0and PNQ = 0.

To conclude, we see that P U U U, and () constitute an open partition of X, and so () is trivial.

n>0

Indeed, we have already (P U U Un> NE=(PNQ)U U U,NQ=0. Plus, S C U U, so

n>0 n>0 n>0
(PUUUn)UQ:X. O

Corollary 2. There exists an omega-flimsy space if and only if there exists an uncountable topo-
logical space in which the non-degenerate connected sets are exactly the cofinite sets.

Proof. By removing from an omega-flimsy space the finite number of singletons which are not
closed, we obtain a T1 omega-flimsy space. The finite connected subsets of a T1 space are de-
generate. The cofinite subsets are connected by definition. An omega-flimsy space is uncountable
because () is always connected. 0

10



	Omega flimsy
	Small results
	The connected subsets


